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Abstract—The performance of an FPGA based CNN acceler-
ator is determined by both parallelism and frequency, however,
most prior works optimize the parallelism in the RTL design and
resolve the frequency after the synthesis. This paper presents a
design space exploration method for the pipeline implementation
of the deep CNN models, which concurrently optimizes paral-
lelism and frequency to achieve a comprehensive optimization
on throughput. In addition to the quantitative modeling on
parallelism, the maximum achievable system frequency under
various parallelism is explored to leverage the PVT-margins
in real-life scenarios and is adopted to guide the design space
exploration for further performance boost. A case study of the
AlexNet model is implemented using the proposed method on the
Altera DE5a-Net board. The experimental results demonstrate
that our method can achieve the throughput up to 906.25GOP/s,
which gains 1.39× improvement compared to state-of-the-art
RTL optimization methods.

I. INTRODUCTION

In recent years, field programmable gate arrays (FPGAs)
exhibit superior energy efficiency in the high-performance im-
plementation of deep convolutional neural networks (CNNs).
The throughput is computed by the system frequency and the
parallelism which is measured by the number of operations
per cycle [1].

The system frequency and the parallelism have a mutual in-
fluence with each other, due to the constraints of resource and
bandwidth of the hardware. However, recent works on RTL-
level accelerator designs mainly focus on the enhancement of
parallelism but rarely taking the frequency into consideration
[1]–[6]. The implementation-level optimization methods op-
timize both of parallelism and frequency by enhancing the
parallelism in the RTL design and improving the frequency in
the placement or routing [7], [8]. Since the independent opti-
mizations take little account of the mutual influence between
the two aspects, the throughput of these methods may be opti-
mized but may not be maximized. The work in [9] optimizes
the throughput with concurrent consideration of parallelism
and frequency. But most of the models are established with
empiricism, which decreases the commonality for application.
In addition, the kernel frequency in the model is derived from
the synthesis data, which is extremely conservative.

As the fabricating technology advancements, process varia-
tion becomes more prominent [10]. Commercial design tools
usually adopt the worst-case process, voltage and temperature
(PVT) as one of the guidance for placement and routing

to ensure the reliability of the circuit. However, the worst-
case PVT casts a large deviation to the reality and thus
makes the frequency reported by the commercial tool much
lower than the maximum achievable frequency in real-life
scenarios. It is reported that the performance can be im-
proved by 30.70% with leveraging real-life PVT margins on
a 60nm FPGA [11]. Traditional FPGA-based overclocking
techniques usually delve the frequency enhancement with
general circuits without considering the scenarios of high
resource or bandwidth requirements [12]–[14], which are less
practical for throughput-oriented applications such as deep
CNN accelerators. Therefore, in this paper, we come up with
a design space exploration method for the FPGA-based CNN
accelerators which leverages the real-life maximum achievable
frequency for efficient performance boost.

The key contributions of our work are listed as follows.
1) The maximum achievable frequency under various par-

allelism is explored and analytically modeled for the ac-
celerator to leverage PVT-margins in real-life scenarios.

2) The relationships among frequency, parallelism and their
influence factors are analyzed and modeled in details.

3) A design space exploration method with concurrently
optimizing the frequency and parallelism is proposed for
the deep CNN models for comprehensive optimization
on the throughput.

4) A case study of the AlexNet model is implemented using
our method on Altera DE5a-Net board and achieves
1.39× improvement on the throughput.

II. FRAMEWORK OVERVIEW

In the large-scale CNNs, since the size of feature maps
and weights are different among layers, we apply different
parallel strategies for different layers and adopt the pipeline
structure where each layer is treated as a pipeline stage for
implementation. The overall framework is proposed at RTL-
level design. As shown in Figure 1, it is mainly composed of a
CNN accelerator, a clock manager and a temperature monitor.

The clock manager and the temperature monitor are used
for the exploration of real-life maximum achievable frequency.
The clock manager is implemented by a fractional phase-
locked loop (PLL) to provide different frequencies for the
system. The temperature monitor is connected to a temperature
diode on the FPGA to measure the actual on-chip temperature
when running the accelerator. The exploration procedure is
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Fig. 1: The Proposed Framework
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Fig. 2: The Structure of 2-D PE

flexible and requires little logic elements on the FPGA because
both of the components can be implemented with the dedicated
hard IP [15], [16] and the controller of the two components
is implemented as software running on the host computer.

The multi-stage pipeline and the pipeline controller are
the components for the implementation of the deep CNN
accelerator. The number of pipeline stages is the same as the
number of layers in the CNN model. The on-chip memories
are connected between layers to store the intermediate results.
All the weights are read from external memory by PCIE and
controlled by DMA.

The structure in a pipeline stage is implemented with the
typical structure which implements the pooling, ReLU or LRN
function combined with the convolution, as in [3]. The 2-D PE
is adopted to implement the convolution kernel, as shown in
Figure 2. The MACs are arranged in a ceil(WS ) × ceil(WS )
array with the input of each column separated by S − 1
buffers. Here, W is the width of the kernel and S is the stride.
The convolution for an input map can be completed with
[ceil(WS )]2·Rin·Cin operations with the presented PE structure
where Rin and Cin are the number of rows and columns in an
input feature map. The FC layers are implemented by matrix
multiplication. Since they are memory-intensive, we adopt the
batch-based computing for the FC layers.

III. DESIGN SPACE EXPLORATION

The optimization objective in our work is to maximize
the throughput of the CNN accelerator in real-life scenarios.
The throughput can be computed with the product of system
frequency and the number of operations per cycle.
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Fig. 3: Relationships between Frequency and Parallelism

The implementation of a pipeline expects the execution
time of each pipeline stage to be approximately the same. We
denote the number of clock cycles for each pipeline stage as
Ncycle. Since the number of operations for each layer should
be completed in Ncycle, the throughput of the CNN accelerator
can be expressed as in Equation 1 where Nin and Nout are
the number of input and output feature maps, respectively. f
is the system frequency.
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Since most of the parameters can be extracted from the CNN
model except for Ncycle and f , our optimization objective is
to maximize the f

Ncycle
under the constraints of the available

Resource, Bandwidth and the maximum achievable frequen-
cy FPV T

max under the real-life PVT, as described below.
Objective: Maximize( f

Ncycle
)

Subject to

f,Ncycle ≤ Resource (2)
f,Ncycle ≤ Bandwidth (3)

f,Ncycle ≤ FPV T
max (4)

A. In-Depth Analysis on the Frequency and Parallelism

The relationships among frequency, parallelism and their
influence factors are depicted in Figure 3. We firstly discuss
each influence aspects in details and then model them to the
constraints in the problem formulation.

1) Constraints of the Resource: The multiplication in the
CNN model is implemented with on-chip DSPs. The number
of required DSPs for a layer is computed by the division of
the total number of multiplications of a pipeline stage and the
Ncycle. The intermediate results between layers are stored in
the on-chip memories. Thus the size of the required memory
followed by a layer should be greater than the size of its output
data. The number of required on-chip memories by a layer is
computed by the division of the total required data size and
the capacity of one BRAM.

Each type of resources required by the accelerator is pre-
ferred not greater than the availability of the FPGA. Therefore,
the constraints of Resource can be formulated by Equation
5, 6 and 7, where CBRAM is the capacity of one BRAM. The



memory requirements of FC layers are increased by batch size
N to store the intermediate data for N input maps.
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2) Constraints of Memory Bandwidth: The bandwidth re-
quired by a layer is computed by the product of the frequency
and the number of data access with external memory per
cycle. Since all the intermediate data are stored in the on-
chip BRAMs and only weights are read from extern, the total
required bandwidth is the sum of weight requirements of each
layer. The required bandwidth is preferred not greater than but
as close to the available bandwidth as possible for achieving
high performance. Thus the constraint of Bandwidth can be
expressed as in Equation 8 where the bit width of one data
is denoted as BWbit. The batch based computing effectively
increases the data reuse of weights for the FC layers and
decrease their bandwidth requirements by 1

N .

f
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3) Constraints of the PVT: As one of the divisors in the

throughput, the frequency owns the same importance as par-
allelism. However, commercial design tools usually adopt the
worst-case PVT for timing analysis, such as the temperature
deviation demonstrated in [17], [18]. Therefore, we explored
the maximum achievable frequency in real-life scenarios and
adopted it as a guidance for design space exploration.

In the maximum achievable frequency exploration, a series
of frequencies ranging from the tool-reported frequency to the
maximum frequency that can be obtained by PLL with an
increment of approximately 10MHz are provided by the clock
manager. A set of input maps with known output are adopted
as a test case and are input to the CNN accelerator recurrently
during the exploration. The frequency is initially set as the
tool-reported frequency and is increased step by step. Since
the increase in frequency would disturb the on-chip thermal
equilibrium, the computational results are checked after the
on-chip temperature comes into stable. This guarantees the
reliability of the circuits working on maximum achievable fre-
quency in real-life scenarios as well. The maximum achievable
frequency is worked out when the increase in frequency give
rise to any error in the output results.

4) Relationship of Parallelism and Frequency: The paral-
lelism exerts indirect influence on the system frequency.

A high resource utilization would give rise to routing con-
gestion and decline the maximum achievable frequency. The
resource requirements of the CNN accelerator increase with
the improvement of parallelism, which indicates a degradation

on the frequency. We model the explored maximum achievable
frequency FPV T

max with different Ncycle as a fitting function, as
shown in Equation 9.

FPV T
max (Ncycle) = f(Ncycle) (9)

On the other hand, the bandwidth required by the paral-
lelism would also limit the maximum frequency, which has
been demonstrated in Equation 8. We denote the limitation
of bandwidth on the frequency as F bandwidth

max which can be
formulated as a function of Ncycle and batch size N , as shown
in Equation 10.
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The maximum frequency Fmax ought to simultaneously
satisfy the above two aspects, as shown in Equation 11.

Fmax = min{FPV T
max (Ncycle), F

bandwidth
max (Ncycle, N)} (11)

B. Problem Solving

The solving procedure for the formulated problem is as
follows. First, the constraint in Equation 5 is worked out for
a given CNN model and a target FPGA. Then under this
feasible region, the maximum achievable frequency FPV T

max

under different Ncycle is explored and is modeled by a fitting
function. Since the constraints in Equation 5-11 restrict the
feasible region of f and Ncycle quite small, the optimal f and
Ncycle can be worked out by an exhaustive algorithm.

The batch size N are dynamically adjusted along with the
exhaustion procedure to maximize the bandwidth utilization
by relaxing the restriction of bandwidth on the maximum
achievable frequency. It should meanwhile satisfy the BRAM
constraint in Equation 6. The actual parallel strategy which
is represented by the number of PE components Pi in the
ith layer is adjusted to guarantee the actual number of clock
cycles in each pipeline stage not exceeding the Ncycle.

IV. EXPERIMENTAL RESULTS

The proposed method is demonstrated by implementing
the AlexNet with parameterized Verilog scripts on the Altera
DE5a-Net board via Quartus prime 16.0. All the experi-
ments are conducted with the ambient temperature of 30◦C.
The AlexNet is implemented with an 8-stage pipeline with 5
convolution stages and 3 FC stages. 16-bit fixed point data
is proven to be accurate enough for computation [19] and
thus is adopted for the weights, input feature maps and the
intermediate results.

In the exploration of maximum achievable frequency, the
FPV T
max has an approximately consistent trend with the tool-

reported frequency and achieves over 10% improvement in
our experiments. A dozen of fitting functions such as the
Logistic or Lognormal is provided for chosen. The inversely
exponential decay function ExpDecay achieves the highest
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fitting precision which is over 99.8% and thus is adopted to
express the relationship between the FPV T

max and Ncycle.
The optimization objective, f
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f and Ncycle are depicted in Figure 4. The maximum f
Ncycle

achieves in the green circle which is 625 with Ncycle = 3.6×
105 and N = 33. And the parallel strategy for each layer is
detailed in Table I.

TABLE I: Parallel Strategy for Each Layer

Layer Conv1 Conv2 Conv3 Conv4 Conv5 FC6 FC7 FC8
Pi 48 32 48 36 32 128 64 16

To further demonstrate the effectiveness of our method,
the original RTL optimization method [4] which takes the
parallelism as the optimization objective is re-implemented as
a baseline for comparison. The design report of the baseline
and our method are listed in Table II.

TABLE II: Design Report of the Methods

Design Report
Resource Type Frequency

ALM DSP BRAM (0.9V, 100◦C)

The Baseline 67.52% 97.23% 49.71% 163MHz

The Proposed 55.34% 81.82% 71.66% 200MHz

The comparison between the two methods is illustrated in
Table III. Even though the baseline has higher utilization on
computational resources, the higher parallelism increases the
data access with the external memory and seriously decreases
the space for frequency enhancement. In consequence, the
performance does not get any improvement even if the baseline
is working at a higher frequency in the real-life scenario,
because the computations have to wait for the weights load-
ing. In contrast, our work can fully exploit the bandwidth
and frequency and achieve a comprehensive optimization on
performance. The maximum throughput of our method is up
to 906.25GOP/s, which is 38.89% higher than the baseline.
This further demonstrates the importance of using the real-life
maximum achievable frequency for design space exploration.

TABLE III: Comparison of the Proposed Method and Baseline

Techniques Ncycle
FPV T
max

(62◦C,1.8V)
F bandwidth
max

Actual
Throughput

The Baseline 3× 105 180MHz 135MHz 450img/s
↑ ×1.39

The Proposed 3.6× 105 225MHz 231MHz 625img/s

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose a design space exploration method,
which concurrently optimizes the parallelism and the system
frequency to achieve a comprehensive maximization on the
throughput. Future works would apply the proposed method
to various CNN model for verification and adopt appropriate
thermal management for online timing variation to avoid the
timing violations on the FPGA.
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