
  

 

Depth estimation from a single image is very challenging due to 

the inherent ambiguity of mapping a color image to a depth map. 

Previous work tackles this problem by exploiting various levels of 

features with multi-scale deep convolutional neural networks. 

However, most of the local geometric structure related monocular 

depth cues are lost when being propagated through convolutional 

neural network. Moreover, the error of depth cues related to local 

geometric structures is not considered in the loss function. In this 

work, we propose the GeoCueDepth convolutional neural network 

to exploit local geometric structure cues and propose a training 

loss that takes the geometric error into consideration, which 

significantly improve the performance of depth prediction in both 

accuracy and sharpness. Experiments show that the proposed 

method achieves 0.122 average relative error and 0.078 square 

relative error on the NYU Depth v2 data set, which outperforms 

state-of-the-art monocular depth estimation approaches. 

I. INTRODUCTION 

Depth estimation plays an important role in autonomous 
robot navigation, grasping, human-computer interaction, 3D 
modeling and augmented reality. While dedicated depth 
sensors like 3D laser scanner or RGB-D camera can give 
accurate depth measurement, depth estimation from color 
images is still fundamental when the depth sensor is not 
equipped or is not able to generate clean data.  

Previous depth estimation methods mainly focus on stereo 
[1,2] and motion (Structure-from-Motion, SfM) [3]. When 
stereo views are provided, the depth map can be estimated 
from accurate image correspondence that is described 
conventionally by hand-crafted features. In the motion case, 
based on the point correspondences between relevant frames, 
the 3D scene can be reconstructed through triangulation. On 
the other hand, depth estimation from a single image is 
expected in many applications such as virtual shopping, real 
estate, object recognition [4], human detection [5] and 
automatic 2D-to-3D video conversion. However, unlike depth 
estimation from stereo and motion, monocular depth 
estimation is very challenging due to the inherent ambiguity of 
mapping a color image to a depth map, as a given color image 
can be mapped to numerous possible world scenes.  

A color image consists of many depth cues which can be 
classified to semantical cues, such as object location, object 
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size, occultation, and geometric structure cues, e.g. edge, 
corner, vanishing point, perspective, texture gradient. Visual 
system of human beings can inference 3D structure 
information from 2D image according to monocular depth 
cues [2]. It still remains a difficult challenge in robotic vision 
to predict depth map from these cues.  

Previous work tackles this problem by exploiting various 
levels of depth cues. At an early stage, efforts of exploring 
monocular depth cues related to geometric structure are 
primarily based on hand-crafted features [6~10]. Later on, 
depth features were learned from deep convolutional neural 
net-works (CNNs) [11~18].  

However, we observe that the monocular depth cues 
related to local geometric structures are mostly lost during 
being propagated through the CNN layers. In addition, 
quantification metrics such as square relative error and root 
mean square relative error cannot represent the underlying 
geometric structure of the scene. Therefore, prior work 
sometimes will be trapped in a dilemma that the accuracy of 
the predicted depth map looks high but geometric details such 
as strong edges and corners are lost, as shown in Figure 1.  

Our objective is to build a CNN that can well exploit the 
geometric cues to enhance the depth estimation performance. 
We demonstrate the effectiveness of the proposed approach in 
terms of both accuracy and sharpness and compare it with the 
other state-of-the-art monocular depth estimation approaches 
on the widely used NYU Depth v2 dataset [30]. 

The main contributions of this work are: 

a depth cue expressway architecture, in which the 
monocular depth cues that have been extracted in low 
layers are forwarded to the last summation layer to provide 
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Figure 1. Examples of depth estimation results using conventional CNN 
method. The accuracy is high (i.e. square relative error between the 

pre-dicted depth image and the groudtruth are 0.259 in the first row and 

0.270 in the second row, respectively) but many geometric structures such 
as strong edges and corners are lost. From left to right: color image, 

predicted depth image [11], and ground truth. 
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geometric structure details of the scene, thus to improve 
the accuracy and sharpness of the predicted depth map. 

a local geometric structure error, which considers both 
accuracy and local geometric structure details. In addition, 
a loss function derived from this metric encourages the 
predicted depth map to retain more geometric features 
such as strong edges and corners. 

II. RELATED WORK 

Depth estimation from a single image is an ill-posed 
problem because a captured color image scene can be mapped 
to numerous real world scenarios [11]. Previous work 
addresses this issue by exploiting various levels of depth cues. 
Saxena et al. [6] used linear regression and Markov Random 
Field (MRF) with multi-scale hand-crafted features to predict 
depth map. Then they developed their theory to Make3D [7] 
for 3D model generation. Despites of low-level and mid-level 
cues, high-level cues such as user annotations [8], semantic 
object labels [9] were also used to predict depth map.  

In recent years, various deep CNNs were proposed, e.g. 
AlexNet [20], VGG [21], ResNet [22], which were applied to 
object classification, object detection and semantic 
segmentation tasks and achieved very good performance. The 
growing interest for CNNs has inspired ideas of end-to-end 
learning depth map from CNNs [11~18]. 

The CNN-based monocular depth estimation approaches 
have two ways to process depth cues. One way is to transform 
monocular depth cues into intermediate products by CNN at 
first, then post-process these intermediate products by 
Conditional Random Fields (CRFs) [15, 16] or random forest 
[18], and harmonize the information to form a depth map at 
last. Liu et al. [15] assumed an image can be over-segmented 
into image patches (super-pixels) and defined these 
super-pixels as nodes of CRF. For a super-pixel, its unary 
potential and pairwise potential were learned by CNN and 
were fed to the CRF structured loss layer. Predicting the depth 
map is to maximize the conditional probability. Afterwards, Li 
et al. [17] combined the approaches of Liu et al. [15] and 
Eigen et al. [11], and used a hierarchical CRF to integrate 
global context CNN results and regional CNN results. In 
addition to CRFs, random forest is also introduced to 
accomplish this task [18]. Chakrabarti et al. [19] solved the 
problem of monocular depth estimation by using a neural 
network to produce a mid-level representation that 
summarized depth cues. 

The other way is to directly regress a color image into the 
depth map in the pixel level. The pioneer work was proposed 
by Eigen et al. [11]. They proposed a two-scale network 
architecture: the coarse scale makes a global prediction based 
on the entire image, and the fine scale refines this prediction 
locally. Later on, they extended the work to a three-scale 
network architecture for pixel level tasks including depth 
estimation, surface normal prediction and semantic labeling 
[12]. More recently, Mancini et al. [13] proposed an encoder 
–decoder architecture and Laina et al. [14] introduced a 
single-scale CNN architecture that consisted of the fully 
convolutional architecture and the residual learning [22] to 
estimate depth. 

 

Moreover, relative depth annotations were used by Zoran 
et al. [23] and Chen et al. [24] to train their depth prediction 
CNN. In addition to the supervised methods, semi-supervised 
[28] and unsupervised [29] depth estimation methods were 
proposed recently. 

III. MOTIVATION 

While the prior work on monocular depth estimation has 
achieved good performance, we find that there are still two 
issues that limit the accuracy and sharpness of the estimated 
depth map. 

A.  The problem of depth cue vanishing  

To better understand the performance contribution from 
different layers, Yosinski et al. [25] introduced a visualization 
tool to give insights into the function of intermediate feature 
layers. We utilized this tool to visualize feature maps 
generated by each layer and observed that some monocular 
depth cues were lost step by step in the CNN pipeline. One of 
the root causes is that the fully-connected layer flattens the 
two-dimensional feature maps to a one-dimensional vector, 
resulting in vanishing of local geometric information such as 
edges, corners, and perspective, as shown in Figure 2.  

The other root cause is the pooling operation. Convolution 
layers usually contain a pooling operation. No matter what 
pooling operation is chosen, e.g. the max-pooling, the 
average-pooling or the stochastic-pooling, the pooling 
operation actually emphasizes the relative relationship among 
neighboring features rather than the absolute value of a feature. 
Therefore, pooling has a negative effect on retaining 
geometric structure related depth cues.  

Motivated by this observation, we propose a “depth cue 
expressway” architecture to retain the geometric structure 
information. It forwards geometric structure related 
monocular depth cues to the last layer where the depth map is 
predicted. Since these cues distributed in feature maps are 
directly utilized to estimate depth map, our model not only 
improves sharpness, but also benefits accuracy. We will 
elaborate our model with depth cue expressway architecture in 
Section IV.B. 

B. The problem of neglecting geometric error 

The most commonly used loss function for depth 

regression task is the L2 loss, which minimizes the Euclidean 

..
.

Feature maps with 

size (W,H)

Fully-connected layer 
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Features with 
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Figure 2. Fully-connected layer. The input of the fc layer is C channel 
of feature maps with witdth W and height H, the output of the fc layer is 
a vector of size  (N,1), where N is the number of neurons in the fc layer. 
The two-dimensional feature maps are reduced to a one-dimensional 
vector. 
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distance between the predicted depth 
id  and the ground truth 

depth *

id  for a pixel i.  

* 2

2

1
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i P
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n 

   

where P represents the entire image of the scene, n is the pixel 

number of P. The L2 loss only measures the numerical 

difference of  
id  and *

id , having no description about the 

correlation between the neighborhoods ( )iNg d and 
*( )iNg d  

of pixel i. 

Prior work [12, 15] has shown that if the geometry related 

features could be considered in some way, then the depth 

estimation performance could be improved. Eigen et al. [12] 

considered image gradients of the prediction with the ground 

truth in the loss function to encourage predictions to have not 

only close-by values, but also similar local structures. Liu et al. 

[15] used a pairwise potential item to measure the similarity of 

adjacent super-pixels.  Different with these work, we use three 

principle geometric feature metrics, i.e. curvature, gradient, 

and contrast, to quantify the correlation of ( )iNg d  and *( )iNg d , 

and derive a loss function to train our convolutional neural 

network. This loss function encourages small pieces of the 

depth map to have similar geometric structure. We will 

present our loss function in detail in Section IV.C. 

IV. PROPOSED APPROACH 

In the section, we first define the local geometric structure 
error to measure the difference of two images in terms of 
geometric structures. Then we present the GeoCueDepth 
approach. The proposed GeoCueDepth approach consists of a 
novel neural network architecture that has dedicated depth cue 
expressways to forward feature maps with rich geometric cues 
and a novel training loss function that specifically considers 
geometric structures. 

A. Relative Local geometric structure error 

To solve the aforementioned problems of neglecting the 
geometric structure error, we consider curvature, gradient, and 
contrast of Tamura's texture features [26] to quantify the 
geometric structure information. 

The relative error in curvature and the relative error in 

gradient are given by,  

       * * *

1 , /i i i i iT d d d d d     

       * * *

2 , /i i i i iT d d d d d     

where   represents curvature [31] and   represents the sum 

of horizontal and vertical gradients. Note that for the corner 

case that the denominator is 0, a mask should be set to exclude 

this pixel. 

Moreover, contrast implies the depth hierarchy, for 
example, high contrast means abundant depth hierarchy. The 
original contrast of Tamura's texture features is calculated on 
the entire image, as follows, 

   
1

2
4
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We modify the original contrast metric by taking ( )iNg d  

into consideration to measure local structure, 

       * * *

3 , ( ) ( ) / ( )i i i i iT d d Ng d Ng d Ng d     

Based on the abovementioned geometric errors, we define 
the Relative Local Geometric Structure Error (RLGSE) as 
follows: 

   * *1
, ,i i j j i i

j i P

RLGSE d d T d d
n




   

where , 1,2,3j j  is the empirical coefficient for each error. 

In the following, we use RLGSE to guide the selection of 
feature maps that should be forwarded to the last layer to 
produce the depth map, as well as to guide the modification of 
the training loss function 

B. Depth cue expressway architecture 

As we have mentioned, conventional CNN-based 
monocular depth estimation approaches have the depth cue 
vanishing problem. To deal with this problem, intermediate 
results which are rich in monocular depth cues should be 
retained and be utilized to enhance the depth prediction 
performance.  

 To give an insight to monocular depth cues distributed in 
the primitive model, we visualize this primitive model with 
the tool proposed by Yosinski et al. [25]. By observing the 
visualized feature maps, we find monocular depth cues such as 
strong edges, corners, and texture gradient are obvious in the 
feature maps generated by the low level layers, and then 
gradually vanishes along with a sequential convolution and 
pooling operations. Therefore, we quantitatively analyze this 
phenomenon. We calculate the average RLGSE of the feature 
maps in multi-channels,  

*( ( ,{ }), ) /i i ie RLGSE F x W D C , 

where ( ,{ })iF x W is the feature map generated by the ith 

layer, *D  is the ground truth of scene depth, and iC is the 

number of channels.  

We plot 
ie  in Figure 3. The RLGSE value gradually 

decreases along with the CNN layers. We can see there are 
several abrupt drops in the curve. The points marked in red 
represent local minimums, which means the feature maps 

 
Figure 3 The RLGSE of feature maps. The marked points correspond to 

three layers: pool1, res3a_branch2c and res3b3. 
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Figure 4  Our GeoCueDepth convolutional neural network. Our model consists of a main part derived from ResNet-101, and a depth cue expressway 
architecture.The convolutional kernel size and channels of feature maps are listed in the rectangles and the size of feature maps size labeled below. The 

depth cue expressway is a fully convolutional network layer. There are three depth cue expressways inserted after the pool1 layer, the res3a layer and the 

res3b3 layer respectively.  

contain abundant geometric structures that are similar to the 
ground truth scene. Please note the RLGSE rises again after 
the drops, indicating the geometric structure related features 
diminish in the subsequent layers. That is also consistent with 
our observation on the visualized feature map. We use the 
local minimums in low level layers to guide the CNN design 
because the size of feature maps in high level layers is too 
small to give meaningful geometric cues. 

To utilize these depth cues that will disappear, we forward 
the intermediate feature maps generated by the pool1, 
res3a_branch2c and res3b3 layers via three dedicated depth 
cue expressways to the summation layer which predicts depth 
map. Depth cue expressway is a fully convolutional network 
which consists of three convolutional layers and has no 
pooling layer to avoid reducing the size of features and 
filtering out structure details. When the 3×3 kernel is used, 
padding is needed to maintain the size of feature maps. 

We designed a depth prediction convolutional neural 

network, which is derived from the well-known ResNet of 101 

layers (ResNet-101). We removed the global pooling layer 

with all the layers behind it in ResNet-101 and appended a 

convolutional layer and a fully-connected layer. 

As shown in Figure 4, the assembly of the layers in green 

and in orange forms a primitive model. The GeoCueDepth 

model further consists of three depth cue expressways. Please 

note that the res3a_branch2c layer is within the residual 

building block. In order to preserve the completeness of the 

residual building block, the depth cue expressway is attached 

to the output of the residual block. The depth cue expressway 

inserted after the res3b3 layer gets the input feature map with 

size of 37×27, therefore, an extra deconvolution layer is 

inserted to upsample the feature map. Finally, depth maps 

forwarded by these four branches are merged at the 

summation layer. The ResNet-101 part in the GeoCueDepth 

network can utilize high-level depth cues and the depth cue 

expressway part pays more attention to the geometric structure 

related monocular depth cues, which benefits the depth 

estimation performance a lot. These skip connections were 

used in FCN [32] to combine coarse feature maps with fine 

feature maps. Different with the skip connections in FCN, our 

expressway is used to preserve local geometric structure. 

C. Training loss function 

There are various types of loss used in training 
convolutional neural networks to estimate depth map. 
However, existing loss functions have not taken the 
geometric structure into consideration. We propose a training 
loss function which is derived from the RLSGE metric, 
thereto consider the geometric structure errors, 
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In this training loss function, we replace the relative 

component  *,j i iT d d  to quadratic component  2 *,j i iS d d  to 

make it derivable. To achieve small loss, not only the 

predicted depth should be close to the ground truth depth value, 

but also the curvature, gradient and contrast of Tamura's 

texture features should be similar with the ground truth. Thus, 

our loss function encourages the GeoCueDepth model to 

generate similar geometric structure with the color image of 

the scene. This loss function is flexible and easy to be 

extended if more structure features need to be considered, as 
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long as the error metric is derivable. Otherwise, appropriate 

transformation is needed for getting derivable items. 

V. EXPERIMENTS 

In this section, we describe the evaluation results on the 
NYU depth v2 dataset which contains images taken by Kinect 
camera in 464 indoor scenes, with the official split consisting 
in 249 training and 215 test scenes. 

A. Experimental framework  

We train the primitive model based on the pre-trained 
RetNet-101 and fine-tune the whole model by stochastic 
gradient descent (SGD). In the GeoCueDepth architecture, 
xavier initialization is used in the convolutional layers, and 
rectified linear units are used in the whole model. Dropout 
layers are inserted before the fully-connected layer to avoid 
overfitting. We initialize the learning rate as 1e-5, and use the 
learning rate policy of dropping the learning rate in "steps" 
#20000 by a factor for gamma 0.1 every stepsize. 

To improve diversity and variability of dataset and get 
more training example, we use data argument techniques 
including scale, rotation, crop, HSL shift and flip. Note that 
when using scale, we assume depth is simply proportional to 
the field of view, ignoring other image-forming condition.  So 

 

when image of the scene is zoomed in by a factor ω, the 
corresponding depth should be divided by the factor ω. When 
the image is rotated, cropping should within the boundaries of 
original image. We use HSL shift instead of RGB shift, as the 
random shift in Hue, Saturation and Lightness are more 
similar to the variant light conditions in the natural 
environment. 

We trained and tested our model with the Caffe [27] 
framework on a NVIDIA GeForce GTX 1080Ti with 11GB 
frame buffer. It took about two days to train. Another 
advantage of directly regressing depth map is that the 
prediction time is 31ms per image, which almost equals to the 
forward time of the CNN, therefore, our model can meet the 
real time requirement for many applications. 

B. Evaluation 

We evaluate our approach with measurements commonly 
used in previous work, as shown in Table 1. Table 2 reports 
the performance of our GeoCueDepth method, along with 
other popular state-of-the-art methods that are also trained on 
the NYU Depth v2 dataset. As can be observed, our approach 
outperforms the conventional methods [7,12,15] with large 
margins. In particular, the accuracy of   increases significantly 
from 0.715 to 0.865, and the error of log10 reduces by half. 
Therefore, the joint effect of forwarding monocular depth cues 
and loss function considering geometric structure benefits 
both accuracy and sharpness.  

The predicted depth maps are illustrated in Figure 5. 
Firstly, we compare the depth map predicted by the primitive 
model with the GeoCueDepth model. For both models, many 
geometric structure details are retained, for instance, the edges 
of desk legs and the ladder. But with more geometric structure 
cues, the depth map predicted by our GeoCueDepth is closer 
to the ground truth and is sharper. 

Then we compare the GeoCueDepth results against other 
CNN-based methods that regress the depth map directly. Our 
results are significantly better than that of [7, 15]. Comparing 
with the recent work of Eigen et al. [12], our depth predictions 
have retained more geometric structures and exhibit 
noteworthy visual quality, for example, in the first row, the 
edge of the ladder is sharper, in the second row, the edge of 

TABLE I DEPTH ESTIMATION MEASUREMNENTS 

Metric Expression 
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Image of scene Make3D[7] Liu et al. [15] Eigen et al.[12] Primitive model GeoCueDepth Ground truth 

Figure 5 Examples of the predicted depth maps on the NYU Depth v2 dataset. As we can see, with effective utilization of geometric structure related 

monocular depth cues, our approach yields the depth map retainig more geometric structures such as strong edges and corners. 
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the TV set is sharper, and in the third row, the legs of the desk 
and chairs are more evident. 

VI. CONCLUSION 

We have proposed a new model based on deep learning for 

the task of monocular depth estimation. The GeoCueDepth 

model employs a depth cue expressway architecture and 

enhances the training loss function to consider local 

geometric structure errors. The curvature, gradient, contrast 

cues and the expressway are able to successfully highlight 

geometric structures that are in the ground truth scene depth. 

This enables the proposed model to outcome a more detailed 

depth representation of a scene. Our extensive evaluation on 

the NYU v2 dataset demonstrates the effectiveness of the 

proposed model by showing better overall accuracy and 

sharpness. This work shows that features of local geometric 

structures are helpful for depth estimation. In the future, we 

plan to conduct experiments on more datasets like KITTI and 

try more geometric structures. 
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TABLE 2 DEPTH ESTIMATION PERFORMANCE ON NYU DEPTH V2 

Method 

Accuracy 

(higher is better) 

Error 

(lower is better) 

1.25   21.25   31.25   rel sqr-rel rms rms-log log10 

Make3D [7] 0.447 0.745 0.897 0.349 - 1.214 - - 

Eigen et al.[12] 0.769 0.950 0.988 0.158 0.121 0.641 0.214 - 

Liu et al. [15] 0.614 0.883 0.971 0.230 - 0.824 - 0.095 

Wang et al. [16] 0.605   0.890 0.970 0.220 0.210 0.745 0.262 0.094 

Chakrabarti et al. [19] 0.650 0.895 0.968 0.208 0.195 0.770 0.270 - 

Laina et al. [14] 0.811 0.953 0.988 0.127 - 0.573 0.195 0.055 

Our primitive model 0.715 0.936 0.985 0.179 0.150 0.619 0.305 0.107 

Our GeoCueDepth model 0.865 0.963 0.992 0.122 0.078 0.430 0.260 0.050 
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