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Abstract— Unsupervised video prediction is a very challeng-
ing task due to the complexity and diversity in natural scenes.
Prior works directly predicting pixels or optical flows either
have the blurring problem or require additional assumptions.
We highlight that the crux for video frame prediction lies in
precisely capturing the inter-frame variations which encompass
the movement of objects and the evolution of the surrounding
environment. We then present an unsupervised video prediction
framework — Variation Network (VarNet) to directly predict
the variations between adjacent frames which are then fused
with current frame to generate the future frame. In addition,
we propose an adaptively re-weighting mechanism for loss
function to offer each pixel a fair weight according to the
amplitude of its variation. Extensive experiments for both
short-term and long-term video prediction are implemented
on two advanced datasets — KTH and KITTI with two
evaluating metrics — PSNR and SSIM. For the KTH dataset,
the VarNet outperforms the state-of-the-art works up to 11.9%
on PSNR and 9.5% on SSIM. As for the KITTI dataset, the
performance boosts are up to 55.1% on PSNR and 15.9%
on SSIM. Moreover, we verify that the generalization ability
of our model excels other state-of-the-art methods by testing
on the unseen CalTech Pedestrian dataset after being trained
on the KITTI dataset. Source code and video are available at
https://github.com/jinbeibei/VarNet.

I. INTRODUCTION

Unsupervised video prediction generates the future frames
based on previous video sequences without external super-
vision. Computer systems that can forecast how the scene
will unfold would open up new possibilities ranging from
domestic service robots that can better interact with humans,
autonomous cars that can self-drive more safely in cities
to emergency response systems that can timely anticipate
sudden accidents. In [1]–[3], video prediction is applied to
self-driving cars in order to help autonomous navigation.

Fundamentally, learning such predictive models for natural
videos is very challenging because of the complexity and
diversity in the scenes. At the early stage, [4]–[6] attempt to
make predictions by using high-level semantic information
such as human actions and unusual events. Since these
approaches rely on predefined semantic information, they
can only provide partial descriptions for the future and have
limited applications like Atari games. Recently, pixel-level
approaches have been proposed. [3], [7]–[10] directly predict
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the entire frame by hallucinating the pixel values. Due to
the complexity and diversity of the scenes, these works
usually have the problem of blurring, especially for moving
objects and tiny details. In order to reduce blurring, [11]–
[15] explicitly model the pixel-wise motion trajectory with
optical flow by using a one-stream neural network or a two-
stream neural network. Although optical flow is the most
commonly explored motion field, it is susceptible to failure
in challenging conditions such as occlusion, fast motions, as
well as abrupt illumination or nonlinear structural changes.

We point out that the key to video prediction is to
accurately capture the inter-frame variations between frames
which refer to the change extent of pixels between two
adjacent frames and reflect the movement of objects and the
evolution of the surrounding environment. Previous works
that directly predict the entire frame inherently regard the
pixels of a moving object contributing the same as that
of the static background, leading to an averaging effect
on pixels and therefore blurry predictions. On the other
hand, the optical flow based approaches only capture the
motion factor in the variation, hence cannot reflect the
overall differences between frames. In contrast, we directly
predict the inter-frame variations between adjacent frames
with a Generative Adversarial Network (GAN) architecture
for unsupervised prediction. The main contributions of our
work are summarized as follows:

1) To the best of our knowledge, this is the first work to
generate inter-frame variations instead of absolute pixel
values for unsupervised video prediction. We develop
a network model — VarNet to predict the inter-frame
variations. Meanwhile, the current frame is directly for-
warded from the input to the end of the network with
a dedicated connection, which will be fused with the
predicted variation map to produce the future frame.

2) An adaptively re-weighting mechanism is imported into
the loss function in the purpose of highlighting the
contributions of pixels to variations. A pixel with a higher
variation will be given a higher weight than a pixel
with a lower variation. During training, the loss function
is updated by re-weighting pixel-level loss between the
prediction and the ground truth.

3) Extensive experiments for long-term and short-term video
prediction are implemented on advanced datasets — KTH
[16] and KITTI [17], [18] with two evaluating metrics
— PSNR and SSIM. For the KTH dataset, our results
demonstrate a significant performance boost than the
state-of-the-art up to 11.9% on PSNR and 9.5% on SSIM.
As for the KITTI dataset, the performance boosts are up
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to 55.1% on PSNR and 15.9% on SSIM. Moreover, we
verify that the generalization ability of our model is supe-
rior to other approaches by testing on the unseen CalTech
Pedestrian dataset [19] after models being trained on the
KITTI dataset.

II. RELATED WORK

Prior video prediction works can be broadly classified
into two categories: semantic-level prediction and pixel-
level prediction. Among the semantic-level prediction works,
[4] leverages event knowledge from a training database of
videos to construct an event prediction for a given static
query image. [6] and [5] propose action-conditional encoder-
decoder networks to predict future frames in Atari games.
Semantic-level approaches require not only extra semantic
information but also fully-labeled data for training, which
is very costly, so in recent years, pixel-level unsupervised
prediction has attracted a lot of attentions.

The pixel-level video prediction works attempt to model
the evolution of pixels over time. [7] uses an encoder LSTM
to map input sequences into a fixed length representation and
then decodes it via a multiple decoder LSTMs. Because of
not distinguish moving pixels from static background, the
model makes an averaging effect on pixels. [8] mitigates
blurry prediction with three techniques including of a multi-
scale architecture, a generative adversarial training method,
and an image gradient difference loss function. [9] uses a
deterministic prediction model to leverage scene or video
similarities for predicting the visual appearance of the near
future frames. However, [10] finds that there is an intrinsic
ambiguity in deterministic prediction and then proposes a
probabilistic prediction framework to mitigate this problem.
[3] propose a PredNet architecture in which a network layer
makes local predictions and forwards deviations from the
local predictions to the subsequent layers and finally gener-
ates the-next frame prediction. Instead of directly predicting
an entire frame, [20] learns the transformations of the past
frames with a convolution neural network, and predicts the
affine transformation needed for generating the next frame.

To obtain sharp video prediction, some recent works have
explicitly modeled the pixel-wise motion trajectory with opti-
cal flow by using a one-stream network [11]–[13] or by using
a two-stream network [14], [15]. [11] proposes a CNN-based
optical flow estimation network NextFlow which is trained
by a mixture of synthetic and real videos. Hence compared
to previous works that can only perform well on synthetic
datasets, the NextFlow can yield favorable results on real-
world videos. [12] presents a fully-convolution encoder-
decoder network for video frame interpolation (synthesis in-
between existing frames) and extrapolation (prediction the
subsequent next-frame). [13] introduces a spatio-temporal
network which contains CNN-based spatial autoencoders,
optical flow modules, and ConvLSTM-based temporal en-
coders to generate future frames. [14] is a two-stream net-
work in which the inputs are divided into two groups of
motion and content, and are encoded by separate pathways
to capture motion and content independently. [15] proposes

a dual GAN model in which the future-frame prediction and
future-optical-flow prediction mutually help each other to
synthesize new video frames.

Beside the model design, the loss function which guides
the convergence of the model is also of vital importance.
Existing loss functions such as mean square loss (MSE)
[3], [7], [8], [10], [21] and gradient difference loss (GDL)
[8] treat every pixel position equally. However, according to
human experience, the pixels in the vicinity of the moving
object bear much greater variations than the other locations.
Thus, greater variations deserve greater attention during
prediction.

Although the aforementioned works make great progress
in video prediction, they still have the blurring problem or
have difficulties in coping with fast motion and abruptly
changed illumination. In contrast to existing works, we di-
rectly predict inter-frame variations to generate future frames
and re-weight the pixels according to their contributions to
variations in the loss function. The proposed model can
generate sharp results even in long-term prediction, and
has good generalization ability. Next, we will introduce our
model in detail.

III. THE VARNET MODEL

We use generative adversarial networks (GANs) as the top-
level architecture of our model. It has been proved in [8], [22]
that generative adversarial training [23] can be successfully
employed for next-frame prediction. The generator network
produces the variation map from the input frame sequence
and then combine the predicted variation map with the
latest input frame to predict the next frame. For adversarial
training, we layout a discriminator network to ensure the
prediction to be more realistic.

A. Generator Network

The generator network architecture is shown in Fig. 1. Let
X = {X1,X2, ...,Xt} represent a video sequence of t input
frames and ∆X = {∆X1,∆X2, ...,∆Xt−1} represent the t−1
variation maps between adjacent input frames. The generator
network aims at predicting the variation map ∆Xt between
the current Xt and the next Xt+1 by

∆Xt = g(X ,c) (1)

where c represents the LSTM cell state memorizing the
temporal information of input variation maps. Then the
future frame Xt+1 is obtained via element-wise summation
between the predicted variation map ∆Xt and current frame
Xt . For prediction of multiple frames, the generator takes the
prediction x̂t+1 and the variation map between the prediction
x̂t+1 and previous frame xt as input to generate the next future
frame x̂t+2, and so forth.

The generator network is an encoder-decoder framework.
For the encoder as illustrated at the bottom of Fig. 1, we
adopt a Convolutional LSTM architecture. We experiment
with two different convolution network architectures: VGG-
16 [24] and ResNet-32 [25]. In Fig. 1, we take ResNet-32 as
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Fig. 1. The pipeline architecture of the VarNet generator network. At the beginning of the pipeline, a variation extraction module produces variation
maps from the input sequence. The encoder network is implemented with ResNet-32 as an example, which is followed by a convolution LSTM to explore
temporal information of variation maps. The decoder subnetwork converts the variation tensor to the predicted variation map. Skip connections are employed
for fusion of the multiple scale information. The predicted variation map is then combined with the last input frame to obtain the prediction of the next
frame. As to the long-term prediction, the VarNet takes existing frames and previously predicted frames as input, and then combines the currently predicted
variation map with the latest predicted frame to predict the next frame, and so forth.

an example. The LSTM layer is laid on top of the last layer
of ResNet-32 to memorize the high-level spatio-temporal
information into variation tensor recurrently. For decoder
part, We adopt the deconvolutional network which is similar
to [26]. To obtain the predicted variation map which may be
positive or negative, we employ tanh(·) as the last activation
function in the decoder network. In the whole generator
network, we also employ skip connections for multi-scale
information fusion across layers in the encoder.

During training or testing, the t − 1 extracted variation
maps are fed into the encoder one by one. After observing the
input sequence frames, the decoder transforms the variation
tensor from LSTM into the prediction of variation map
between the frame Xt and the frame Xt+1. The predicted
variation map ∆Xt is then summed with the previous frame
Xt to generate the predicted frame X̂t+1. The predicted frame
can be fed into the generator to predicted the next frame X̂t+2,
and so forth.

The output of the generator represents the difference
between the current frame and the next frame to be predicted.
In the variation map, the pixel that has a higher value
obviously contributes more to the variation than the pixel
that has a lower value, and should be given a higher weight
during the training process. Based on the observation, we
propose to employ a re-weighting mechanism on the content
loss to highlight the pixels’ contribution to the inter-frame
variation, which will be detailed in the next section.

We assume that the content information between adjacent
frames in videos will not change drastically. Hence the
previous adjacent frame can offer very rich information for
the prediction of the future frame. The model produces
the next frame prediction Xt+1 by adding the frame Xt to
the generator’s output — the predicted variation map. The
addition operation is element-wise and computation efficient.

Long-term prediction can be achieved by taking existing
frames and previously predicted frames as input, and then
combining the currently predicted variation map with the
latest predicted frame to predict the next frame.

B. Discriminator Network

The discriminator needs to be able to distinguish real
frame sequences from the predicted frame sequences. The ar-
chitecture of the discriminator network in this work is a deep
spatio-temporal convolution neural network similar to [15].
To make use of temporal information, the video sequences
concatenated by the input X1:t and the future Xt+1:t+T are fed
into the discriminator network. Consequently, the generated
video sequences are consistent with the input from the
dataset.

The generator network and the discriminator network
are two independent models and we train them alternately
and iteratively. We explain the training method in the next
section.

IV. TRAINING

To avoid the instability during training the GAN, we
adopt multi-module losses similar to [14]. Please note, we
apply an adaptively re-weighting mechanism to the loss
function design in order to consider the pixels’ contribution
to variations. The multi-module losses consist of the content
loss and the adversarial learning loss.

Let X = {X1,X2, ...,Xt} represent the input sequence of t
frames and Y = {Xt+1,Xt+2, ...,Xt+T} be the next sequence
of T frames to be predicted. Ŷ = {X̂t+1, X̂t+2, ..., X̂t+T}
represents the predicted sequence of T frames. Next we will
introduce the content loss and the adversarial loss in detail.
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A. Content Loss

Adaptively re-weighting content loss (RWL): In the nat-
ural scenes, most of the time, only a small percentage of the
scene has obvious changes. In other words, a major part of
the scene is consistent between adjacent frames. For human
beings, we usually pay more attention to the objects which
have larger motions or more significant structural changes.
Therefore, pixels belonging to the changing foreground or
the static background indicate different levels of importance.
In our model, the elements in the predicted ∆X represent the
pixel variation between adjacent frames. So we can use its
absolute value to re-weight the content loss by:

LRWL(Y , Ŷ ) =
T

∑
i=1

∣∣|∆Xi−1|(Yi− Ŷi)
∣∣p

p (2)

where p is a hyper-parameter. The content loss guides the
prediction of the VarNet to be as close as possible to the
ground truth. The training process is promoted by the re-
weighting operation to generate a sharp prediction.

Gradient difference loss: Moreover, we directly penalize
the differences of image gradient predictions [8] to further
sharpen the prediction. The GDL loss function in [8] is given
by :

LGDL(X , X̂) = ∑
i, j

∣∣|X i, j−X i−1, j|− |X̂ i, j− X̂ i−1, j|
∣∣α+

∑
i, j

∣∣|X i, j−1−Y i, j|− |X̂ i, j−1− Ŷ i, j|
∣∣α (3)

where α is a hyper-parameter greater or equal to 1, i and j
represent pixel coordinates in frames. The GDL loss keeps
the forecast in line with the ground truth in terms of gradient.

In summary, the whole content loss is combined by:

Lcontent = LRWL +LGDL (4)

B. Adversarial Learning Loss

Training the discriminator D: To train the discriminator
D, we need to freeze the weights of the generator G and
perform the SGD optimization on the network. The goal is
to classify the input sequence {X ,Y } into real sample and
{X , Ŷ } into fake sample. Thus the loss function of D and
the binary cross-entropy loss Lbce are given by:

LD = Lbce(D({X ,Y }),1)+Lbce(D({X , Ŷ }),0) (5)

Lbce(Y,Ŷ ) =−Ŷ log(Y )+(1− Ŷ )log(1−Y ) (6)

where Y and Ŷ take values in {0,1}.
Training the generator G: Similarly, to train the genera-

tor G, we need to freeze the weights of the discriminator D
and perform the SGD optimization on the network. The goal
is to make the discriminator be not able to distinguish the
real frame sequences from the generated frame sequences.
The loss for the generator is defined by:

LG = Lbce(D({X , Ŷ }),1) (7)

We set thresholds for the update of the generator and
the discriminator. If the discriminator’s loss is lower than a

threshold, we will stop the update of the discriminator. And
if the discriminator’s loss is higher than a threshold, we will
stop the update of the generator. In other cases, the updates
of the generator and the discriminator are iteratively.

C. Total Loss

The total loss of the VarNet model is defined by:

L = λcontentLcontent +λGLG (8)

where λcontent and λG are two hyper-parameters to balance
the weight of each sub-loss.

V. EXPERIMENT

We evaluate the VarNet on three challenging datasets: the
KTH [16], the KITTI [17], [18] and the CalTech Pedestrian
[19] datasets. The metrics we use to measure the results are
the Peak Signal to Noise Ratio (PSNR) and the Structural
Similarity (SSIM) [27]. The higher values of the both metrics
indicate better results. For all experiments, we set p = 2 in
Eq. (2) and α = 1 in Eq. (3), respectively. The experiments
are conducted on the public Tensorflow platform with version
1.2 on a single NVIDIA GeForce GTX 1080.

A. PSNR and SSIM on the KTH and KITTI datasets

Experimental settings: The KTH dataset contains a total
of 2391 video samples taken by 25 people in 6 different
scenarios. It has 6 types of human actions: walking, jog-
ging, running, boxing, hand waving and hand clapping. All
sequences were taken over homogeneous backgrounds but
were different from each other in scale, clothe and lighting.
Following the previous work [14], we use person 1-16 for
training and person 17-25 for testing. We resize frames into
128*128 pixels and normalize them to the range [0, 1].
We set λcontent = 1 and λG = 0.02 for training. The KITTI
dataset is currently the world’s largest autonomous driving
benchmark. We use the raw data which was captured by
a car-mounted camera. We pre-process the data into 61
recording sessions. Frames are center-cropped and down-
sampled to 240*320 pixels. We set λcontent = 1 and λG =
0.0001 for training. For short-term prediction, we train the
network to predict 10 future frames on KTH and 4 future
frames on KITTI by observing 10 frames; for long-term
prediction, we train the network to predict 40 future frames
by observing 10 frames.

Results: Fig. 2 shows the comparison for long-term pre-
diction results of the state-of-the-art method MCNet [14] and
the VarNet. On both datasets, all VarNet variants demonstrate
a significant performance boost than the MCNet. Specifically,
the VarNet(ResNet)+RWL outperforms the MCNet by up to
11.9% on PSNR and 9.5% on SSIM for the KTH dataset,
and by up to 55.1% on PSNR and 15.9% on SSIM for the
more complex KITTI dataset. According to our testing, the
consumption of time for the model to predict one frame is
about 0.02 seconds on the KTH dataset and 0.05 seconds on
the KITTI dataset.

From Fig. 2, we can see the re-weighting loss mecha-
nism obviously has positive effects, especially for long-term
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Fig. 2. Comparison of MCNet and VarNet variants. ”RWL” represents the VarNet adopts the adaptively re-weighting loss mechanism during training.
Left two columns: evaluation on KTH dataset. Right two columns: evaluation on KITTI dataset.

Fig. 3. 10-step short-term prediction on the KTH dataset. In each group,
the first row indicates the predicted results and the second row indicates the
ground truth.

prediction. The improvement of the long-term prediction is
significantly higher than that of the short-term prediction,
which is consistent with our observation that the pixels with
larger contribution to inter-frame variations deserve more
attentions than the pixels with less contribution.

B. Result visualization on the KTH and the KITTI datasets

For the sake of clarity, some short-term and long-term
predictions of the VarNet(ResNet)+RWL are visualized.

Fig. 3 shows the 10-step short-term prediction. We can
see the predicted frames are sharp and the tiny details are
accurate. Please note that the model can predict the switch of
the actions accurately — the hands of the man will separate
after they are closed, as shown in the third group.

Fig. 4 shows the 40-step long-term prediction. We can
see that the model predicts the change of gait accurately
including the bending of the legs and the movement of the
body.

From Fig. 5, we can see that the model can generate the
correct gaits of the walkers and predict the moving vehicles
very clearly. As shown in the second group, the network is

Fig. 4. 40-step long-term prediction on the KTH dataset. In each group,
the first row indicates the predicted results and the second row indicates the
ground truth.

able to correctly handle the challenging situation that the
vehicle is obscured by the traffic light pole.

From Fig. 6, we can see that our model can predict the
change of lanes on the road and the movement of the vehicle.
For the first 20-step predictions, the cars in the scene can
be predicted well. However, as time goes on, the cars (
especially the red one ) become blur. We think the main
reason is that the object red car is so small that it takes up
only a few pixels in the picture, which impacts the model’s
judgment of inter-frame variations.

C. Generalization ability

Experiment settings: To verify the generalization ability
of the model, we test our model on the unseen CalTech
Pedestrian dataset after training it on the KITTI dataset.
The Caltech Pedestrian Dataset consists of approximately 10
hours of videos taken from a vehicle driving through regular
traffic in an urban environment. We use the testing data from
set 06 to set 10. The model is trained based on ten frames
observation to predict the next frame.
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Fig. 5. 4-step short-term prediction on KITTI. In each group, the first row
indicates the predicted result and the second row indicates the ground truth.

TABLE I
PERFORMANCE (PSNR AND SSIM) OF VIDEO PREDICTION ON

CALTECH AFTER TRAINED ON KITTI DATASET.

Method PSNR SSIM
CopyLast 20.996 0.762

CNN-LSTM Enc.-Dec. [13] 24.353 0.865
BeyondMSE [8] 24.867 0.881

PredNet [3] 25.044 0.884
Dual Motion GAN [15] 26.179 0.899

MCNet [14] 26.98 0.885
VarNet(VGG)+RWL 27.802 0.903

VarNet(ResNet)+RWL 27.985 0.912

Results: We compare our approach to the Copy-Last-
Frame baseline and the other state-of-the-art works. The
results are averaged over the test videos. As illustrated in
Table I, our model outperforms all the other methods. These
results indicate that this model achieves good generalization
ability across different datasets.

VI. CONCLUSION

In this paper, we propose the VarNet network to directly
explore the inter-frame variations for unsupervised video
prediction. We further propose an adaptively re-weighting
mechanism in loss function design to leverage the contri-
butions of pixels to the variations. Extensive experiments
demonstrate our model outperforms the state-of-the-arts. In
the future work, we will verify the effectiveness of the VarNet
on more datasets.
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