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RT3D: Real-Time 3-D Vehicle Detection in LiDAR
Point Cloud for Autonomous Driving

Yiming Zeng , Yu Hu , Shice Liu , Jing Ye , Yinhe Han , Xiaowei Li , and Ninghui Sun

Abstract—For autonomous driving, vehicle detection is the pre-
requisite for many tasks like collision avoidance and path planning.
In this letter, we present a real-time three-dimensional (RT3D) ve-
hicle detection method that utilizes pure LiDAR point cloud to
predict the location, orientation, and size of vehicles. In contrast to
previous 3-D object detection methods, we used a pre-RoIpooling
convolution technique that moves a majority of the convolution
operations to ahead of the RoI pooling, leaving just a small part
behind, so that significantly boosts the computation efficiency. We
also propose a pose-sensitive feature map design which can be
strongly activated by the relative poses of vehicles, leading to a
high regression accuracy on the location, orientation, and size of
vehicles. Experiments on the KITTI benchmark dataset show that
the RT3D is not only able to deliver competitive detection accuracy
against state-of-the-art methods, but also the first LiDAR-based
3-D vehicle detection work that completes detection within 0.09 s
which is even shorter than the scan period of mainstream LiDAR
sensors.

Index Terms—Object detection, segmentation and categoriza-
tion, autonomous agents.

I. INTRODUCTION

V EHICLE detection requires the autonomous ego vehicle to
detect nearby obstacle vehicles quickly and localize them

accurately so that the ego vehicle correctly control its speed
and direction, as well as plan a preferable path. However, real-
time 3D vehicle detection remains challenging, especially when
driving at high speed on urban roads. Currently, a car-equipped
LiDAR sensor typically scans at 10 frames per second [1], cap-
turing approximately one million 3D points per second. In other
words, there is only 100 ms processing time for each frame
of LiDAR point cloud data. LiDAR-based 3D object detection
methods usually consist of two stages, i.e., a region proposal
stage and a classification stage. In the region proposal stage, 3D
candidate regions in point cloud space are generated, then in
the subsequent stage, each candidate region are classified and
generate a 3D bounding-box. However, these detections in 3D
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Fig. 1. The pipeline of RT3D: (a) a 3-D point cloud of LiDAR is projected
onto (b) a depth map in bird’s-eye view that is encoded with height information
of points. Then (c) a CNN-based two-stage detector is utilized to: 1) generate
region proposals with a Region Proposal Network (RPN) [2], 2) classify the
proposed regions with pre-RoI-pooling convolutions on pose-sensitive feature
maps. (d) Result visualization shows the detected vehicles with the orientated
3-D bounding boxes.

point clouds are time-consuming conventionally due to conduct
classification and regression for thousands of candidate regions.

In this letter, we present a real-time vehicle detection method
RT3D. The pipeline of RT3D is shown in Fig. 1. Firstly, to
meet the input format requirement of the convolution neural
network, we project the discrete 3D point cloud into a 2D grid
representation. Secondly, we encode the height information of
point data in the 2D grid for further 3D detection. Thirdly, a
CNN-based two-stage detector generates region proposals with
a RPN and then conduct classification and location regression
for each Region of Interest (RoI) with pose-sensitive feature
maps. To accelerate the classification stage, inspired by [3], we
use pre-RoI-pooling convolution, which means a majority of
convolution operations in classification stage are moved from
behind of the RoI pooling to ahead of the RoI pooling. Hence,
these time-consuming operations are shared and are conducted
only once for all RoIs instead of being conducted in a RoI-wise
manner at the conventional classification stage.
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Benefited from the pre-RoI-pooling convolution and pose-
sensitive feature map techniques, the RT3D achieves compara-
ble detection accuracy against the state-of-the-art methods on
the KITTI benchmark dataset [1]. Moreover, to the best of our
knowledge, the RT3D is the first LiDAR-based 3D vehicle de-
tection work that completes detection within 0.09 seconds and is
even shorter than the scan period of mainstream LiDAR sensors.

II. RELATED WORK

Convolutional neural networks improve object detection sig-
nificantly. In Fast-RCNN [2], a Region Proposal Network (RPN)
was proposed to generate high-quality candidate regions. Then
Faster-RCNN [4] becomes a de facto pipeline of CNN-based ob-
ject detection. Afterwards, 2D object detector [3] was proposed
to improve the detection accuracy, and [5], [6] were proposed to
accelerate the detection speed. Recently, researchers conducted
3D object detection on RGB images. Chabot et al. [7] proposed
a multi-task neural network to create coarse-to-fine object pro-
posals and to estimate vehicle orientation and location through
2D/3D point matching. Chen et al. [8] exploited stereo images to
place proposals in the form of 3D bounding boxes. The authors
also extended their work to monocular image [9] by projecting
candidate 3D boxes to the image plane and scoring boxes via
prior knowledge.

Besides RGB images, deep learning based techniques also
conducted 3D object detection in point clouds. Qi et al. [10]
proposed a PointNet that directly took point cloud as input. Li
[11] designed a 3D fully convolution neural network to generate
region proposals for 3D object detection. Engelcke et al. [12]
proposed a sparse convolution layer to classify region proposals
generated by a sliding window. Zhou et al. [13] divided the point
cloud into 3D voxels, aggregated local voxel features through
voxel feature encoding (VFE) layers, and transformed point
clouds into a high-dimensional volumetric representation.

Besides directly operating in the 3D space, some other detec-
tion approaches projected the 3D point cloud onto a 2D plane.
[9], [14], [15] constructed a compact 2D representation of 3D
point cloud from bird’s-eye view, while [16] placed 3D windows
on a front-view range map for vehicle detection. Ref. [17] and
[18] generated 3D region proposals from a stack of height maps
and conducted classification and location estimation via fusing
features extracted from LiDAR point clouds and RGB images.
However, these methods are time-consuming, which limits the
practical usage of these methods in autonomous driving.

III. PROPOSED APPROACH

As illustrated in Fig. 1, the discrete 3D point cloud P = {pi =
(x, y, z), i = 1, 2, . . .} is projected onto a 2D grid GN ×N on
the xy-plane with height information embedded. The 2D grid
representation is then fed into a convolution neural network to
estimate the center location, orientation, and size of a vehicle.

A. 2D Grid Representation of 3D Point Cloud

Firstly, the 3D point cloud is projected onto a 2D grid in
the birds-eye view. As shown in Fig. 1, from (a) to (b), we

project 3D point cloud P = {pi = (x, y, z), i = 1, 2, . . .} to
the ground (xy-plane), where x, y, z is the location of point
p. The point cloud is projected onto a ground-plane grid
with resolution 0.05 × 0.05 m, where each grid cell records
(min(z), ave(z),max(z)) of relevant projected points. Grid
cells with no point clouds are assigned a triple of (0, 0, 0). This
2D grid representation of LiDAR points fits for a convolutional
neural network that has three input channels.

B. Vehicle Detection Network

The RT3D network contains a region proposal subnetwork
(RPN) and a classification subnetwork, as shown in Fig. 2.
Features are extracted from the 2D grid by a convolutional neural
network derived from the ResNet-50 [20]. These feature maps
are shared by the RPN and the classification subnetworks.

1) The RPN Subnetwork: We adopt the sliding window and
anchor technique proposed in the Faster-RCNN [4] to gener-
ate region proposals on the feature map. Observing that the
variation of vehicle size is relatively small compared to the
size variation among different object categories, we simplify
the pyramid of multi-scale anchors in the Faster-RCNN to a
single-scale anchor. The region proposals (Δx,Δy, w, l, θ) are
generated on the xy-plane, where (Δx,Δy) represents the off-
set of the vehicle’s center on the xy-plane, and (w, l, θ) repre-
sents the width, length, and yaw of the vehicle. As to the RPN
loss, we calculate confidence scores and Smooth L1 loss [4]
for regression of region proposals. During training, we calcu-
late the Intersection-over-Union (IoU) between bounding-boxes
of orientated RoIs (Δx,Δy, w, l, θ) and the bounding-boxes of
ground truth (Δx∗,Δy∗, w∗, l∗, θ∗). A sample is considered to
be positive if IoU ≥ 0.7, negative if IoU ≤ 0.5, and otherwise
ignored. We apply non-maximum suppression (NMS) to remove
redundant RoIs.

2) The Classification Subnetwork: Since RoI pooling is the
bridge between the region proposal stage and the classification
stage in the CNN-based two-stage detection pipeline, convolu-
tions after the RoI pooling are responsible for classifying RoIs
in a RoI-wise manner. Therefore, for hundreds of RoIs, these
convolutions are conducted hundreds of time. If we move a ma-
jority of convolutions to ahead of the RoI pooling, then these
pre-RoI-pooling convolutions will be conducted once for all
RoIs, which will save much time. However, such speed boost is
at the cost of detection quality. As only a few convolution layers
are preserved in the classification subnetwork, the classification
accuracy will decrease and the location regression will suffer
from translation-invariance [3].

Inspired by the position-sensitive score map idea in [3], we
construct a group of pose-sensitive feature maps to mitigate the
adverse effect raised by the pre-RoI-pooling convolutions. As
LiDAR points are unevenly distributed in space, different parts
of the car contain different amounts of valid point cloud data,
which leads to different estimation probabilities on vehicle lo-
cation, size, and orientation. For instance, if the car is in the
left front of the LiDAR, then LiDAR point data mostly concen-
trate on the right side of the obstacle car. So we firstly divide
the car into k2 parts, using each part of the car to estimate
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Fig. 2. The network architecture of RT3D. It contains a region proposal subnetwork (RPN) and a classification subnetwork. We apply pre-RoI-pooling
convolutions before the RoI pooling operation and construct pose-sensitive feature maps to enhance classification and regression. Besides, online hard example
mining (OHEM) [19] is employed to train the classifier. The bottom left subfigure shows the original RoI pooling and convolutions in the Faster-RCNN. The
bottom right subfigure shows the RoI pooling and convolutions in the RT3D. The pre-RoI-pooling convolutions run only once for all RoIs, while a few convolution
operations after the RoI pooling are preserved, which run for every RoI.

position, contour, and orientation. Then we generate the final
results based on the estimations from all parts. Thus, we con-
struct k2 groups of feature maps correspondingly to k2 parts of
a car, which are called pose-sensitive feature maps, as shown in
Fig. 2.

Meanwhile, each RoI is also divided into k2 regions. Taking
k = 2 as an example, four groups of feature maps are con-
structed correspondingly to the upper-left, upper-right, bottom-
left and bottom-right parts of the car. Then the selective RoI
pooling will sample the upper-left RoI region from the feature
maps which are corresponding to the upper-left part of the car.
The remaining three RoI regions will be sampled in a similar
way. Afterward, features from different parts are merged into
one “spliced feature map” for classification and estimation of
location, size, and orientation. In fact, the selective RoI pooling
is a more general expression of RoI pooling. As shown in Fig. 2,
selective RoI pooling divides a RoI into k2 parts and samples
features from k2 groups of feature maps. When k = 1, selective
RoI pooling reduces to RoI pooling. A RoI is divided into k2

regions {Ri,j |1 ≤ i ≤ k, 1 ≤ j ≤ k}, for a RoI of a size h × w,
a region is of a size h

k × w
k . Let (x, y) denote the offset to

the top-left corner to a RoI, selective RoI pooling is defined
as S(x, y) = IRi , j

(x, y)Fi×k+j (x, y), where i =
⌊

xk
h

⌋
, j =⌊

yk
w

⌋
and IRi , j

= 1, if(x, y) ∈ Ri,j else 0. The Fi×k+j term

means the (i × k + j)th group of feature maps.
The spliced feature map is used for classifying a vehicle and

for regression to get the center and size (Δx,Δy,Δz, w, l, h)
of the vehicle, where Δx,Δy,Δz is the offset of the vehicle
center in the 3D point cloud space. The parts of feature maps
from different groups, which are denoted with short arrowed
lines, are used for calculating the directions θi, i = 1, . . . , k2 ,
of different locations, respectively. Finally, a linear regression
is deployed to generate the yaw θ =

∑k 2

i=1 αiθi + βi of the
vehicle.

3) Training: The loss defined on each RoI is the summation
of the classification loss, the bounding box regression loss, and
the cosine loss of the yaw angle:

L(s, pΔx,Δy ,Δz ,w ,l,h , θ) = Lcls(sc∗) + λ11[c∗�=0]Lreg (p, p∗)

+ λ21[c∗�=0]Lcos(θ, θ∗)

where Lcls(sc∗) = − log(sc∗), Lreg (p, p∗) is Smooth L1 loss
defined in [2]; Lcos(θ, θ∗) = (cos θ − cos θ∗)2 . 1[c∗�=0] equals
1 if c∗ �= 0, otherwise equals 0; and c∗ = 0 indicates the back-
ground.

Two issues caused by the sparsity of the point cloud need to be
addressed: 1) during sliding window on feature maps, there are
many anchors which have no data. To reduce computation, we
delete these empty anchors; 2) many region proposals contain
no vehicles or many region proposals contain simple examples,
so online hard example mining (OHEM) [19] is adopted to
automatically select hard examples to make training more ef-
fective and efficient. Besides, a vehicle usually occupies about
32 × 80 grids. The size will be reduced by 32 times in the
original ResNet-50 feature map, which is too small for RoI
pooling. To enlarge the feature map, we modify the parame-
ter stride = 2 in the convolution layers on the conv5 “residual
block” to stride = 1, and we apply the “hole” algorithm [21] to
all following convolution filters on the conv5 “residual block.”
In this way, the size of the generated feature map is doubled.

Our network can be trained end-to-end. For each mini-batch,
we use one image and sample 128 ROIs for back-propagation.
We select 25% of the ROIs as positive to balance the distribution
of examples, which helps to train a more accurate classifier [22].
We initialize the RT3D network with pre-trained ResNet-50
model [20] and use a weight decay of 0.0005 and a momentum
of 0.9. Then we train the network by using SGD with a learning
rate of 0.001 for 80K iterations and 0.0001 for the following
20K iterations.
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TABLE I
3D LOCALIZATION PERFORMANCE: AVERAGE PRECISION (APloc [%])

TABLE II
3D DETECTION PERFORMANCE: AVERAGE PRECISION (AP3D [%])

4) Testing: As shown in Fig. 2, the 2D grid, generated by
projection and encoding, is fed into the two-stage detector. At
the region proposal stage, the feature maps shared with RPN and
classification network are computed. Then the RPN proposes
thousands of RoIs and only 300 RoIs on the xy-plane will
be retained by the NMS operation with IoU threshold of 0.7.
At the classification stage, the pose-sensitive feature maps are
generated and the vehicles’ position, yaw, and size are regressed
from individual RoI. The results are projected onto the xy-plane
and then are filtered by NMS using a threshold of 0.1 IoU to
ensure that vehicles do not occupy the same 2D grid.

IV. EXPERIMENTS

We evaluate the proposed method on the public dataset KITTI
[1] for autonomous driving. This dataset is composed of 7481
training images and 7518 testing images. Since ground truth
annotations for the testing set are not released, following [8], we
divide the KITTI training set into a training set and a validation
set. Note that the samples in the training set and verification set
are exactly the same as [8]. We implement our method based
on Caffe [23] and measure the runtime on the computer with an
NVIDIA Titan X GPU.

We conduct the evaluation on the validation set and present
our results for three levels of difficulty (Easy, Moderate and
Hard) according to different occlusions and truncations, as pro-
posed by the KITTI. Evaluation on the test dataset is also
conducted.

A. 3D Localization

3D localization evaluation is conducted in the KITTI bird’s-
eye view benchmark. Both the accuracy and the runtime are
evaluated. In the road scene, vehicles are driving on the ground

plane. Evaluation criterion uses a bounding box overlap on the
ground (xy-plane), i.e., the information on the height axis is
ignored. The 2D occupancy grid is the most popular map to
represent the environment and to plan paths. To evaluate the
accuracy, we use Average Precision (APloc ) for the bounding
box on the ground. Meanwhile, we compare the runtime of
the different methods because detecting obstacles in real-time
is very important to vehicle safety. Table I presents results on
3D localization on the validation set. Compared to the previous
works, our RT3D method has the fastest detection speed which
is 2.5 times faster than the existing best work VoxelNet [13]. The
detection time of RT3D is within 0.1 seconds, which allows the
RT3D to be deployed in real-time systems. In terms of accuracy,
when in the strictest constraint IoU = 0.7, our method does have
some loss of accuracy compared to MV3D [9] and VoxelNet
[13]. But compared to VeloFCN [16], DOBEM [14], Mono3D
[17], and 3DOP [8], our method still achieves at least 13%
higher accuracy.

B. 3D Detection

The 3D detection is evaluated on the KITTI 3D object de-
tection benchmark. Table II shows the runtime and the average
precision (AP3D ) on the validation set. As 3D IoU thresholds
are rather strict for image-based methods, the IoU = 0.25 case is
considered in the 3D detection. We visualize some 3D detection
results in Fig. 3.

The comparisons of RT3D and the pure LiDAR-based meth-
ods on the KITTI online benchmark (the test dataset) are shown
in Table III. The performance of RT3D on the test dataset is not
as good as on the validation dataset. We analyze some failure
cases in Fig. 4. The first and the second case show inaccurate
predictions of position and orientation. The third case shows a
missed detection due to too few point cloud data. The fourth
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Fig. 3. Result Visualization. This example shows detection results of four different scenes. In each scene, the result of the 3-D localization on the xy-plane is
presented on the left, and the 3-D detection in point cloud is presented on the right.

Fig. 4. Failure cases. Ground-truth are shown in green and our results are shown in red.

TABLE III
RESULTS ON KITTI ONLINE TEST DATASET

case shows a false detection as the point cloud is similar to a
cluttered vehicle point cloud. Besides, the point cloud becomes
very sparse and the features of the car in the distance are hard
to be preserved. To solve these problems, an alternative way is
fusing sparse point cloud and dense RGB images. Besides, most
labeled samples in the training dataset are located near the in-
spection vehicle, which negates the generalization of detecting
vehicles in various ranges.

C. Center Deviation

To more intuitively describe the vehicle position, we analyze
deviations between the predicted centers C and the ground truth
of vehicle centers C∗. The center deviation |C − C∗| is the
distance of the predicted vehicle center C and the ground truth
vehicle center C∗.

Table IV shows the average center deviation ave(|C − C∗|)
in the 3D point cloud space, ave(|Cx − C∗

x |) in the X-
coordinate, ave(|Cy − C∗

y |) in the Y-coordinate, and ave(|Cz −
C∗

z |) in the Z-coordinate. We list the results of Mono3D [17],
3DOP [8], and MV3D [9], because their results are pub-
lic, while the results of VoxelNet [13] are unavailable. In

TABLE IV
VEHICLES CENTER DEVIATION

comparison to Mono3D [17], 3DOP [8], and MV3D [9],
the proposed method achieves the least average deviation.
However, in the direction of the Z-axis, we have some
loss of accuracy because height information is not fully
preserved.

Fig. 5 shows the distributions of the center deviations and
the cumulative distribution. We can see that the center deviation
of the RT3D is mainly concentrated in the 0.05–0.25 m range.
The cumulative distribution graph shows that 87% deviation of
the detected vehicles is within 0.3 m, and the ratio increases to
97.8% when the deviation is within 0.4 m, superior to the other
three methods.
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Fig. 5. (a) Distribution of vehicle center deviations. (b) Cumulative
distribution of vehicle center deviations.

TABLE V
THE QUANTITATIVE EFFECT OF PRE-ROI-POOLING CONV

TABLE VI
AP3D WITH DIFFERENT k (IOU = 0.5)

D. Effect of Pre-RoI-pooling Convolution

The quantitative effect of pre-RoI-pooling convolution is pre-
sented in Table V. The baseline model has no pre-RoI-pooling
convolution and no pose-sensitive feature maps, while the naive
model has pre-RoI-pooling convolution and also has no pose-
sensitive feature maps. Compared to the baseline, the AP3D

of the naive model is lower due to the weak classification
subnetwork.

E. Effect of Parameter k

The parameter k represents the number of divisions of a RoI.
To analyze the effect of different divisions of RoI, we present
the AP3D with different k with IoU = 0.5 in Table VI. When
k = 1, selective RoI pooling reduces to RoI pooling, thus the
performance decreases significantly.

F. Performance at Different Distances

To analyze the performance of RT3D at different distances,
we present the AP3D of vehicles in different ranges, as shown
in Table VII. In the range of 10 to 20 meters, the performance
reaches a peak, due to most of the marked vehicle samples

TABLE VII
AP3D OF DETECTIONS IN DIFFERENT RANGES

being located in this range. When the range exceeds 30 m, the
performance of the algorithm drops drastically because the point
cloud becomes very sparse and the features of the car are hard
to be preserved.

V. CONCLUSION

In this letter, a real-time 3D vehicle detection method is
proposed. Two key techniques of pre-RoI-pooling convolution
and pose-sensitive feature map help to improve computation
efficiency and detection accuracy. Experiments on the KITTI
benchmark dataset show that the RT3D achieves comparable
detection accuracy against the state-of-the-art methods while
completing detection within 0.09 seconds. In the future, we will
use more sophisticated encoding scheme to keep more height
information in the 2D grid.
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