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ABSTRACT
The extensive computational burden limits the usage of ac-
curate but complex object detectors in resource-bounded sce-
narios. In this paper, we present a lightweight object detec-
tor, named LightDet, to address this dilemma. We design a
lightweight backbone that is able to capture rich low-level
features by the proposed Detail-Preserving Module. To ef-
fectively aggregate bottom and top-down features, we intro-
duce an efficient Feature-Preserving and Refinement Module.
A lightweight prediction head is employed to further reduce
the entire network complexity. Experimental results show that
our LightDet achieves 75.5% mAP on PASCAL VOC 2007 at
the speed of 250 FPS and 24.0% mAP on MS COCO dataset.

Index Terms— Lightweight, object detection, real-time

1. INTRODUCTION

Object detection has been improved largely thanks to the de-
velopment of convolutional neural network (CNN). Modern
CNN-based object detection frameworks [1, 2] usually adopt
complex architectures [3, 4] and large images to achieve top
performance. However, these accurate networks having enor-
mous computation and parameter amount are unsuitable for
resource-bounded mobile platforms (e.g., robot, smartphone),
which contain restrictive memory access and computation.

To meet the need of mobile scenarios, several researches
have been conducted to design lightweight object detectors.
Some works prefer to apply small backbone networks [5, 6, 7]
to accurate detection frameworks. For instance, MobileNet-
SSD [5] changed the backbone of SSD [8] to MobileNet [5],
MobileNetV2-SSDLite [6] combined the MobileNetV2 [6]
with a lite version of SSD detection head. However, the de-
signed backbones for classification are not fully suitable for
object detection since detection needs rich low-level informa-
tion which is less crucial for classification. Thus, PeleeNet [9]
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proposed a variant of DenseNet [10] with some efficient mod-
ules. ThunderNet [11] replaced all 3×3 depth-wise convolu-
tions in ShuffleNetV2 [7] with 5×5 depth-wise convolutions
to enlarge the receptive field, and involved more low-level
information by increasing the channels of first few layers.
There are some works focus on decomposing the standard
convolution of accurate detection networks into group con-
volution or depth-wise separable convolution. For example,
Tiny-DSOD [12] introduced depth-wise feature pyramid net-
work and depth-wise dense block into DSOD [13]. We find
that directly applying the effective designs of full-size detec-
tion framework to lightweight detectors brings high computa-
tional cost with limited accuracy improvement.

In this paper, we introduce the LightDet, a lightweight
one-stage object detector. We propose a Detail-Preserving
Module (DPM) to extract and preserve more low-level fea-
tures. LightDet takes DPM as a stem block and further stacks
several ShuffleV2 blocks [7] to obtain semantic features. To
better combine the bottom features with the top-down seman-
tic features for detection, we investigate the drawbacks in fea-
ture pyramid network and design a Feature-Preserving and
Refinement Module (FPRM). FPRM involves more low-level
information and refines the semantic features before fusion.
At last, we apply a lightweight prediction head with small
size convolutional kernel to replace the heavy detection head
widely adopted in current state-of-the-art one-stage detectors.

Extensive experiments on the public datasets (PASCAL
VOC and MS COCO) indicate that LightDet achieves much
better accuracy with less computation than the state-of-the-art
lightweight object detectors. Meanwhile, LightDet is able to
run at more than 200 FPS on a single NVIDIA GTX 1080 Ti.

2. RELATED WORKS

Object Detection CNN-based object detection frameworks
can be roughly divided into two groups: two-stage methods
and one-stage methods. Two-stage methods [1, 2] first out-
put a set of object candidates by the region proposal meth-
ods [2], then these candidates are fed into the detection net-
work to predict the specific categories and locations. These
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Fig. 1. (a) Framework of the proposed DPM. d represents
the dilation rate. (b) Architecture of the proposed LightDet.
DSconv means the depth-wise separable convolution.

methods can produce accurate results but are computationally
expensive with low inference speed. While one-stage meth-
ods [8, 14] directly evolve predefined anchor boxes (anchor-
based) or pixels in feature map (anchor-free) [15] into final
bounding boxes with specific categories. These methods have
compact pipeline and relatively high speed. However, the
above-mentioned methods usually have hundreds of convo-
lutional layers and extensive channels, which require mas-
sive resources and computation. In this paper, we follow the
anchor-based one-stage pipeline and propose a lightweight
object detector dedicating for the resource-bounded platform.
Lightweight Object Detectors The one-stage pipeline is the
mainstream to design lightweight object detectors due to its
compactness and high efficiency. Therefore, some works ex-
plored to combine the lightweight classification backbone [5,
6, 7] with the detection head of one-stage methods or applied
the convolution factorization principle into current full-size
one-stage methods [13]. Even so, we find they still involve
redundant computation. On the other side, ThunderNet [11]
adopted a two-stage pipeline by introducing a modified Shuf-
fleNetV2 into the Light-Head R-CNN [16] with a compressed
RPN and two feature enhancement modules.

3. METHOD

3.1. Detail-Preserving Module

Current state-of-the-art object detectors usually take the net-
work designed for classification as backbone. However, the
classification networks [3, 4, 5, 6, 7] rapidly down-sample the
input to 4-8 times by a few first layers. This operation loses
much low-level features which are beneficial for localization
in object detection. A naive way to improve this is stacking
more convolutional layers in the beginning [13]. However,
this improvement requires additional computational overhead
and is unsuitable for lightweight networks.

We propose an efficient Detail-Preserving Module (DPM)
to extract and preserve more low-level features, as depicted in
Fig. 1(a). We first utilize a 3×3 convolutional layer and output
channel of C=16. To reduce the computational complexity of
DPM, a point-wise convolutional layer is applied to lower the

Stage Component Output Stride

Stem

Convolution (3×3) 16× 320× 320 1
DPM 16× 320× 320 1

MaxPooling (3×3) 16× 160× 160 2
DPM 32× 80× 80 2

Stage 1 ShuffleV2 block 116× 40× 40 2
3×ShuffleV2 block 116× 40× 40 1

Stage 2 ShuffleV2 block 232× 20× 20 2
7×ShuffleV2 block 232× 20× 20 1

Stage 3
ShuffleV2 block 464× 10× 10 2

3×ShuffleV2 block 464× 10× 10 1
ShuffleV2 block 512× 10× 10 1

Table 1. The backbone architecture of LightDet.

dimension of extracted features to C1 channels. The reduced
features are re-sampled by K=C/C1 branches including an
identity mapping. One branch adopts a 3×3 convolutional
layer and the rest branches consist of two 3×3 convolutional
layers with dilation of d=k and d=k+1, k∈[1,K-2]. Because
large dilation has a large receptive field, we take the second
convolutional layer with larger dilation as the residual block
in each branch to avoid involving more background informa-
tion. The outputs from K branches are merged by concatena-
tion to preserve more low-level features.

We take DPM as a stem block and further stack several
ShuffleV2 blocks to abstract more semantic features, there-
fore, the designed backbone network has the capability of
capturing rich low-level and semantic features. Table 1 gives
the detailed architecture of our backbone, named LightNet.

3.2. Feature-Preserving and Refinement Module

FPN [17] is widely applied in object detection framework
to combine low-resolution information with high-resolution
ones, as shown in Fig. 2(a). However, the FPN structure has
some drawbacks when being utilized in a lightweight net-
work. First, FPN uses a 1×1 convolutional layer as lateral
connection to reduce channel numbers and transfer bottom
features. Deeper and larger networks have strong capability
to extract and save features with enormous channels, so a 1×1
convolutional layer is enough. While lightweight networks
have relatively weak modeling capability and less channels,
this operation will lose much information. Second, FPN di-
rectly up-samples lower-resolution features and uses element-
wise addition to aggregate features. However, addition only
mixes the features of different abstraction levels, but cannot
preserve both of them and will weaken the representative of
lightweight network. Third, we find that combining the FPN
with lightweight backbone is computationally inefficient.

The above observations motivate us to propose a Feature-
Preserving and Refinement Module (FPRM), which consists
of a Feature-Preserving Module (FPM) and a Feature Refine-
ment Module (FRM), as shown in Fig. 2(b). FPRM tackles
bottom features and top-down features in different strategies.
For FPM, we set the output dimension of lateral features to
C2 channels. We split the lateral input with Cl channels into
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Fig. 2. (a) FPN. (b) Feature-Preserving and Refinement Mod-
ule. (c) Feature-Preserving Module. (d) Feature Refinement
Module. DWconv means the depth-wise convolution.

two parts with C2/2 and Cl-C2/2 channels. For the part with
Cl-C2/2 channels, we use a point-wise convolutional layer to
reduce its channel to C2/2, then a 3×3 depth-wise convolu-
tional layer to incorporate more context features. These two
parts are merged by concatenation. Therefore, FPM is able
to preserve more bottom features and context information, as
shown in Fig. 2(c). We up-sample the top-down features by
a bilinear interpolation layer, then aggregate the up-sampled
features with the lateral features by concatenation instead of
addition to avoid information loss. However, the concate-
nated features have higher dimensions. We present the FRM
to reduce their dimensions instead of the commonly used 1×1
convolutional layer, which imposes more computational cost
and parameters. The aggregated features are averagely di-
vided into two parts. One part is processed by a 3×3 depth-
wise convolutional layer. Then these two parts are merged by
addition. Therefore, we refine the preserved part by transfer-
ring the information from other parts in a residual way and
obtain the lower-dimensional features, as shown in Fig. 2(d).

3.3. Lightweight Prediction Head

One-stage methods use 3×3 convolutional layer as prediction
head for classification and localization. As shown in Fig. 3(a),
given a input feature X ∈ RH×W×Cx with height H , width
W and channel Cx, we need predict G categories for M an-
chor boxes at a location. The computation of this prediction
head is Cx×M × (G+4)×3×3×H×W . This prediction
head becomes a computational bottleneck.

PeleeNet solved this issue by using a residual prediction
block followed by small kernel size prediction layers. How-
ever, its solution is computationally expensive. We propose
a more lightweight one. The input X is split into two lower-
dimensional branches, where each one has half channels of
X. Each branch is transformed by a set of 1×3, 3×1 filters.
The outputs of two branches are merged by concatenation so
that the number of channels keeps the same as input. We fur-
ther apply channel shuffle [7] to enable information commu-
nication between two split branches, as shown in Fig. 3(b).
This head allows us to use 1×1 convolutional layer for classi-
fication and localization. Its computation is [(Cx/2×Cx/2×
3× 1)× 4+Cx ×M ×G+Cx ×M × 4]×H ×W , which
is only 40.7% of original prediction head in our settings.

H W Cx

H W M G

H W M

Cx Cx
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Fig. 3. (a) Original prediction head. (b) Proposed lightweight
prediction head. It is followed by two 1×1 convolutional lay-
ers for classification (cls) and regression (reg).

3.4. LightDet Architecture

We take the image with size of 320×320 as input and use
5 scales of feature maps: 20×20, 10×10, 5×5, 3×3, 1×1
(called P1∼P5) for prediction. As shown in Fig. 1(b), P1∼P2

are the outputs of FPRM and P3∼P5 are generated from P2

by 3 cascaded 3×3 depth-wise separable convolutional layers
with stride 2. In our preliminary experiments, we also use the
feature map of 40×40 for prediction. However, we find that
including this scale of feature map only improves 0.4% mAP
but brings 90 MFLOPs. We also observe that P3∼P5 generate
many false positives. One hypothesis is that the 3×3 depth-
wise separable convolutional layer cannot extract enough dis-
criminative information, so we change the kernel of P3 to
5×5 and the stride of P5 to 1 (P5 scale becomes 3×3).

4. EXPERIMENTS

We adopt the same anchor boxes setting strategy as SSD, i.e.,
two scales of anchor boxes for P1 and one scale for the others
and each scale has 6 aspect ratios (i.e., 1, 1, 1/2, 1/3, 2, 3),
thus M=6. We set K=4, C2=Cx=128. Moreover, we adopt
the same data augmentation and loss functions as SSD. The
convolutional layers are initialized by “MSRA” [18] method.
Implementation Details. We train LightDet on a single GPU
with batch size of 64. The network is optimized by SGD with
a weight decay of 0.0005 and a momentum of 0.9 for 64.5k
iterations. The initial learning rate is set to 0.008 and decays
by a factor of 0.1 at 38.7k and 51.6k iterations. The training
data is the union set of PASCAL VOC 2007 trainval and VOC
2012 trainval, then we report results on VOC 2007 test set.
Baseline. We replace the stem block in Table 1 with a 3 × 3
convolutional layer with stride 2 and 32 channels followed by
a MaxPooling with stride 2, which is a common practice in
lightweight classification network. We append the FPN with
original heavy prediction head to this network and 6 scales of
feature maps with an additional 40×40 for prediction. It gets
66.8% mAP with 719 MFLOPs.

4.1. Ablation Study

We gradually insert our proposed modules and other improve-
ments into the baseline to evaluate their effect on computation
and performance, as shown in Table 2.
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a b c d e f g h
Baseline X

DPM X X X X X X X
FPM X X X X X X

Concat. in FPN X
FRM X X X X

Prediction head X X X
Modify P3∼P5 X X

Drop 40×40 feature X
MFLOPs 719 842 814 879 779 555 555.3 465

VOC 2007 mAP 66.8 71.0 71.9 72.6 73.1 73.5 74.4 74.0

Table 2. The effectiveness of our proposed modules.
Method Input Backbone FPS MFLOPs mAP(%)

YOLO v2 [19] 416×416 Darknet-19 67 17500 76.8
SSD [8] 300×300 VGG-16 46 31750 77.2

Tiny-YOLO [14] 416×416 Tiny-Darknet 207 6970 57.1
MobileNet-SSD [5] 300×300 MobileNet 59.3 1150 68.0

Pelee [9] 304×304 PeleeNet - 1210 70.9
Tiny-DSOD [13] 300×300 DDB-Net 105 1060 72.1

ThunderNet (ms-train) [11] 320×320 SNet146 248 461 75.1
LightDet 320×320 LightNet 250 465 74.0

LightDet (ms-train) 320×320 LightNet 250 465 75.5

Table 3. Comparison with other lightweight object detectors.
ms-train means multi-scale training.

Effectiveness of DPM. Results in column b of Table 2 show
that though DPM involves high computational cost, it leads
to a gain of 4.2% mAP to 71.0%. This indicates that DPM is
able to capture more informative features from low-levels.
Effectiveness of FPM. We replace the lateral connection of
1×1 convolutional layer in FPN with our FPM. FPM brings
0.9% mAP improvement while lowering 28 MFLOPs.
Concatenation in FPN. If we replace the element-wise ad-
dition in FPN with concatenation and adopt a 1×1 convo-
lutional layer for dimensionality-reduction, we can get addi-
tional 0.7% mAP which reveals that preserving bottom and
top-down features is beneficial for lightweight object detec-
tion. However, this operation incurs extra computational cost.
Effectiveness of FRM. Results in column d and e of Table 2
show that adopting the proposed FRM to lower dimension
while refining top-down features is more effective than a 1×1
convolutional layer. Comparing b and e in Table 2, our FPRM
is not only more effective but also more efficient than FPN.
Lightweight Prediction Head. Our proposed lightweight
prediction head not only greatly reduces the computational
cost but also slightly promotes accuracy (column f ).
Modification of P3∼P5. A slight modification of P3∼P5

brings a noticeable accuracy gain (column g in Table 2) with
negligible computation.
Drop 40×40 Feature Map. Comparing the results of h and
g in Table 2, we find that dropping the 40×40 feature map
only sacrifices 0.4% mAP but enjoys significant computa-
tional savings.

4.2. Results on PASCAL VOC 2007
We also compare our LightDet with state-of-the-art lightweight
object detectors, as listed in Table 3. Our LightDet has only
465 MFLOPs, which is less computational cost than state-of-
the-art lightweight one-stage methods. Our thoughtful design
allows LightDet to achieve much better accuracy than other

Method Input Backbone MFLOPs AP AP50 AP75

YOLO v2 [19] 416×416 Darknet-19 17500 21.6 44.0 19.2
SSD [8] 300×300 VGG-16 31750 25.1 43.1 25.8

Light-Head R-CNN [16] 800×1200 ShuffleNetV2 [7] 5650 23.7 - -
MobileNet-SSD [5] 300×300 MobileNet 1200 19.3 - -

MobileNet-SSDLite [6] 320×320 MobileNet 1300 22.2 - -
MobileNetV2-SSDLite [6] 320×320 MobileNetV2 800 22.1 - -

Pelee [9] 304×304 PeleeNet 1290 22.4 38.3 22.9
Tiny-DSOD [13] 300×300 DDB-Net 1120 23.2 40.4 22.8

ThunderNet (ms-train) [11] 320×320 SNet146 473 23.6 40.2 24.5
LightDet 320×320 LightNet 503 24.0 42.7 24.5

Table 4. Comparison with other lightweight object detectors
on MS COCO test-dev.

methods. We note that ThunderNet achieves its final result by
adopting multi-scale training and Soft-NMS [20]. Therefore,
for fairness, we adopt the same settings and achieve 75.5%
mAP. Our LightDet has slightly more FLOPs than Thunder-
Net in that LightDet needs to predict the category for each
anchor box of each level, and the number of categories and
anchor boxes for prediction affect a lot on the FLOPs. While
ThunderNet is a two-stage method, it adopts a very light
detection head and sparse proposals (e.g., 200) for prediction.
Runtime Analysis. In the 4th column of Table 3, we com-
pare the speed of LightDet with other methods. Our speed is
measured on a single NVIDIA GTX 1080 Ti. We merge the
parameters of Batch Normalization into its preceding convo-
lutional layer, as is a common practice. LightDet runs much
faster than other lightweight detectors.

4.3. Results on MS COCO

We further conduct experiments on the MS COCO dataset.
We train LightDet on trainval 35k set and report final accu-
racy on test-dev set. The initial learning rate is 0.004 and
divided by factor of 10 after 210k and 280k iterations. The
total number of iteration is 320k with a batch size of 64.

The results are listed in Table 4. The increased categories
bring intractable computation, but LightDet still achieves a
higher performance of 24.0% mAP than other lightweight ob-
ject detectors. We think the narrowed ROI features in Thun-
derNet for prediction are inferior for challenging dataset,
while the preserved features of LightDet contain more bene-
ficial information for prediction and thus higher accuracy.

5. CONCLUSION

We present a lightweight object detector LightDet designed
for running in resource-bounded environment. We introduce
a Detail-Preserving Module as stem block to capture and pre-
serve more low-level information for detection. The Feature-
Preserving and Refinement Module is proposed to aggregate
bottom and top-down features more effective than FPN. We
further investigate the drawbacks of prediction head in prior
one-stage methods and present a lightweight one. The exper-
imental results on PASCAL VOC 2007 verify the effective-
ness of our proposed modules in both computation and ac-
curacy. Our LightDet achieves better performance than other
lightweight object detectors.
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