
Two-Stage Safe Reinforcement Learning for
High-Speed Autonomous Racing

Jingyu Niu
Research Center for Intelligent Computing Systems

State Key Laboratory of Computer Architecture, ICT, CAS

University of Chinese Academy of Sciences
Beijing, China

niujingyu17b@ict.ac.cn

Yu Hu ∗
Research Center for Intelligent Computing Systems

State Key Laboratory of Computer Architecture, ICT, CAS

University of Chinese Academy of Sciences
Beijing, China
huyu@ict.ac.cn

Beibei Jin
Research Center for Intelligent Computing Systems

State Key Laboratory of Computer Architecture, ICT, CAS

University of Chinese Academy of Sciences
Beijing, China

jinbeibei@ict.ac.cn

Yinhe Han
Research Center for Intelligent Computing Systems

State Key Laboratory of Computer Architecture, ICT, CAS

University of Chinese Academy of Sciences
Beijing, China

yinhes@ict.ac.cn

Xiaowei Li
Research Center for Intelligent Computing Systems

State Key Laboratory of Computer Architecture, ICT, CAS

University of Chinese Academy of Sciences
Beijing, China
lxw@ict.ac.cn

Abstract—Decision making for autonomous driving is a safety-
critical control problem. Prior works of safe reinforcement
learning either tackle the problem with reward shaping or
with modifying the reinforcement learning exploration process.
However, the former cannot guarantee the safety during the
learning process, while the latter relies heavily on expertise to
design exquisite exploration policy. Currently, only short-term
decision makings for low-speed driving were achieved in road
scenes with basic geometries. In this paper, we propose a two-
stage safe reinforcement learning algorithm to automatically
learn a long-term policy for high-speed driving that guarantees
safety during the entire training. In the first learning stage,
model-free reinforcement learning is followed by a rule-based
safeguard module to avoid danger at low speed without expert
fine-tuning. In the second learning stage, the rule-based module
is replaced with a data-driven counterpart to develop a closed-
form analytical safety solution for high-speed driving. Moreover,
an adaptive reward function is designed to match the different
objectives of the two learning stages for faster convergence to an
optimal policy. Experiments are conducted on a racing simulator
TORCS which has complex racing tracks (e.g. sharp turns,
hills). Compared with the state-of-the-art baselines, the results
show that our method achieves zero safety violation and quickly
converges to a more efficient and stable policy with an average
speed of 127 km/h (3.3% higher than the best result of baselines)
and an average swing of 3.96 degrees.

Index Terms—safe reinforcement learning, autonomous racing
I. INTRODUCTION

Deep reinforcement learning (DRL) is a promising decision-
making paradigm for autonomous driving. It tries to find an
optimal policy to maximize the expected cumulative reward by
balancing the exploitation of current policy and the exploration
of unknown space. The exploration process may lead to some
unsafe actions and cause personal injury and economic loss in

∗ Corresponding author: Yu Hu. This work is supported in part by the
National Key RD Program of China under grant No. 2018AAA0102701, in
part by the Science and Technology on Space Intelligent Control Laboratory
under grant No. HTKJ2019KL502003, and in part by the Innovation Project
of Institute of Computing Technology, Chinese Academy of Sciences under
grant No. 20186090.

the real world. As autonomous driving is a safety-critical field,
how to ensure the safety during DRL learning and execution
is a key research challenge.

TABLE I compares different researches on safe RL from
various perspectives. From the perspective of safe RL [1] for
autonomous driving, prior works can be broadly divided into
two categories: (i) reward shaping [2-5]: designing reward
with risk terms; (ii) modifying the RL exploration process by
action masking [6-11] or correction with safety checker [12-
14]. However, the safety guarantees of those approaches are
strongly dependent on expertise to design exquisite exploration
policy. And they are only experimented at low speed for a short
distance of road without considering the complexity of road
geometry.

Meanwhile, there are some data-driven approaches that
seek to solve the problem of safety learning with theoretical
support instead of manual efforts. These methods are based on
constrained Markov Decision Processes (CMDP) [15], which
aims to maximize the expected cumulative reward of RL while
also satisfying the expected cumulative constraints. One way
[16-18] is to map policy parameters into the safety set by using
the trust-region policy optimization (TRPO) [19]. Another way
takes advantage of modular design and gives a closed-form
solution to correct unsafe actions with a single-step dynamics
model [20] or the Lyapunov stability theory[21]. Although no
expert prior knowledge is needed, these methods require pre-
training or the assumption of the feasible baseline as a start
to ensure learning safety. And they only demonstrate on robot
locomotion tasks with simple 2-dimensional scenes, but not
high-speed, long-term and complex autonomous driving tasks.

In this paper, we propose a two-stage learning safe RL
approach for end-to-end continuous control. It can solve the
problem of learning an efficient and stable policy with safety
guarantee during both training and execution for autonomous
driving tasks, without the prerequisite of expert prior knowl-

TABLE I
COMPARISON OF VARIOUS APPROACHES IN SAFE RL

Domain Methods Safety during
Learning

Expert Prior Knowledge Action
Spaceb

Average Speed
(km/h)

Road
Complexitycdependence timescopea

autonomous
driving

our method yes weak initial L, C 128 M
reward shaping [2-5] no no no L, C or D <=95 M or S

action masking mechanism [6-11] yes strong all H, D <=63 S
safety checker[12-14] no strong all H, D or L, C <=108 M or S

robot locomotion
pursuing safety
during learning

trust-region-based
safety projection [16-18] no no no L, C NA simple two-

dimensional
panelsignle-step safety layer [20] yes weak pretrain L, C NA

Lyapunov-based a-projection [21] no no no L, C NA
ainitial: expert prior knowledge is needed during initial learning phase; all: expert prior knowledge is needed during the entire learning and testing phase;
pretrain: the agent is pretrained with expert prior knowledge before policy learning.
bL: low-level control, such as {steer, throttle, brake} in driving task and {joint torque} in robot task; H: high-level options, such as
{go, wait, lanechange} in driving tasks; C: continuous action; D: discrete action.
cM: complex tracks of multiple structures and physics; S: urban or highway roads with simple geometry.

edge or feasible baselines. The specific autonomous driving
scenario we investigate is a high-speed racing environment
with complex road geometry (e.g. sharp turns, hills). For the
sake of clarity, we define safety as no collision happened or not
out of track. The policy efficiency is evaluated by the average
speed of completing a task, the higher the better. And the
policy stability is evaluated by the amplitude of the car’s swing
from side to side, the lower the better. As shown in Fig. 1,
our two-stage safe RL approach adopts a modular design that
combines an independent safeguard mechanism with model-
free DRL and an adaptive reward function. The safeguard
mechanism contains a rule-based module and a data-driven
module. In the first learning stage, the rule-based module only
helps RL agent avoid dangers, but does not require expert
fine-tuning for an optimal action. This coarse correction does
not care whether the performance is optimal or not and it is
the difference between our rule-based module and prior rule-
based approaches. The adaptive reward encourages policy to
update in the direction of improving safety before efficiency.
At the same time, the data-driven module is trained by data
collected at this stage. Once the data-driven module has
acquired sufficient correction capability, our algorithm enters
the second learning stage by replacing the rule-based safeguard
module with the data-driven safeguard module. Inspired by
recent works [20, 21] but not limited by pre-training and the
assumption above, we develop an analytical feasible solution
to ensure safety and accelerate convergence. The adaptive
reward now changes to guide policy convergence to high
efficiency and better stability.

Our contributions are three-fold. First, we present a two-
stage safe RL algorithm for end-to-end continuous control.
It combines a model-free RL algorithm with an independent
safeguard mechanism and an adaptive reward function. Sec-
ond, we develop a closed-form analytical solution to correct
unsafe actions for ensuring safety during learning and exe-
cution. Finally, we apply our approach to a challenging task
of high-speed racing on tracks with complex geometry. And
we evaluate it in the open racing simulator TORCS [22]. The
experiments show that safety is guaranteed during the learning
and execution phase. Meanwhile, driving policy can converge
faster to higher efficiency and better stability than baselines.

Model-free

DRL for

continuous

control

[DDPG + an

adaptive reward

function]

Rule-based safeguard module

[kinematic bicycle model +

proportional regulator]

Data-driven safeguard module

[Lyapunov-based + foresight]

The safeguard mechanism

Replay buffer
Sampling data for

updating policy

Sampling data for updating

the Data-driven module

Safe Action

（steering &

acceleration

& brake）

Driving environment

Agent

2

1

2

1

(Section

IV.B)

(Section

IV.C)

(Section IV.A)

1 The first learning stage1 The first learning stage 2 The second learning stage2 The second learning stage

ts
safe

ta
1(, , ,)safe

t t t ts a r s +

(, , ,)unsafe

t t ts a r −

ta

Fig. 1. Overview of our proposed safe RL algorithm

The rest of this paper is organized as follows. In Section II,
we introduce the related work in safe reinforcement learning.
In Section III, we briefly review the concept of DDPG and
CMDP. In Section IV, we describe the architecture and learn-
ing procedure of our two-stage safe RL method in detail. In
Section V, we evaluate our approach in 3D racing simulator
TORCS. Finally, we conclude the paper and propose the future
direction in Section VI.

II. RELATED WORK
The comparison of various safe RL approaches are shown

in TABLE I.
Safe RL for autonomous driving. There are two categories

of safe autonomous driving with DRL. (i) Reward shaping
approaches [2-5] directly modify the RL objective function by
integrating risk into reward to reduce safety violations. But this
category cannot guarantee the absolute safety of the training
process. (ii) Another category is to modify the RL exploration
process [1] with expert prior knowledge, which can be further
divided into action masking mechanism and safe checker. The
action masking mechanism forces the discrete-action DRL to
only choose the best action from a list of safe actions. This
masking mechanism can be implemented by a rule-based [6-8],
a linear temporal logic [9, 10] or a prediction [11] approach.
Although the masking mechanism can achieve safety during
learning, these approaches rely heavily on manual design for
short distance, low-speed urban or highway scenarios with

simple geometry, e.g. a straight road. The safe checker is more
flexible than action masking mechanism to deploy on discrete
or continuous action DRL. The safe checker assesses danger
level of current actions generated by DRL and corrects unsafe
actions to ensure safe driving [12-14]. But these methods
still fail to achieve 100% safety because the safety checker
heavily relies on expert experience and lacks theoretical safety
guarantees that make it difficult to apply to unseen scenes.

Safe RL with theoretical safety guarantees during learn-
ing. There are some approaches for robotics that seek to
analytically solve the problem of safety during DRL learning
based on continuous constrained Markov Decision Processes
(CMDP) [15]. [16-18] extend the trust-region policy optimiza-
tion [19] with CMDP to update policy within safety bounds
in expectation. These trust-region methods achieve near-safety
satisfaction, but cannot guarantee zero safety violation espe-
cially at the beginning of training, due to approximation errors
of the Fisher information matrix. And they are only suitable
for RL based on TRPO. Gal Dalal et al. [20] propose the safety
layer concept which models single-step dynamics and corrects
unsafe actions to accomplish zero safety violation. The safety
layer can be directly added to the output of a continuous
RL algorithm to obtain a closed-form analytical solution of
action correction. The a-projection approach in [21] leverages
the idea in [20], but further uses the notion of Lyapunov
function, which is an important tool for stability certification
of dynamical systems [23, 24], to represent constraints from an
energy perspective for better stability and robustness. Although
[20,21] can guarantee safety during learning in an elegant way,
they only work reliably with adequate pre-training or assume
a feasible policy as the starting baseline. In addition, they
are not applied to the complex, long-horizon and high-speed
autonomous driving tasks.

Inspired by [20, 21], we propose a two-stage learning safe
RL algorithm, which includes a safeguard mechanism and
an adaptive reward function to assist model-free RL in a
high-speed racing environment with complex road geometry.
Different from [20, 21], (i) our method can keep safe learning
from scratch by adding the simplified dynamics knowledge in
the initial learning phase without additional assumptions and
meticulous expert efforts; (ii) we extend to a foresight safe-
guard solution with multi-step prediction for timely response
and faster convergence to an optimal policy.

III. PRELIMINARIES

In this section, we briefly introduce Deep Deterministic
Policy Gradient (DDPG) [25] and CMDP, and explain why
DDPG is chosen as a part of our safe RL algorithm.

A. RL & Deep deterministic policy gradient (DDPG)

RL is a decision-making method based on Markov Decision
Progress (MDP), defined by the tuple (S,A, P, r, γ), where
state st ∈ S, action at = π(st) ∈ A, reward rt = r(st, at)
at time step t, P : S ∗ A → Distr(S) is the probabilistic
transition function, and γ ∈ [0, 1] is the discount factor to
control the influence of future rewards. The goal of RL is to

learn an optimal policy π to maximize the excepted discounted
sum of future rewards JπR.

Since we focus on continuous control for autonomous
driving task, the off-policy actor-critic (AC) algorithm is a kind
of RL that can be well suited for, because it has high data-
efficiency by allowing the use of data from different policies.
DDPG is currently the most representative work among AC
algorithms. Without loss of generality, we use DDPG in
this work to introduce our two-stage safe RL algorithm. In
the future, we will try other AC algorithms to show the
effectiveness of the proposed algorithm.

DDPG contains an actor network π(st| θπ), a critic net-
work Q(st, at|θQ), a replay buffer and two target networks
π̂(st| θπ̂), Q̂(st, at| θQ̂) corresponding to the actor and critic
network respectively. The actor network is responsible for
generating an action and is updated by policy gradient and
the critic estimation, as shown in (1). The critic network is
the action-value function to measure the quality of a state-
action pair. Based on the Bellman equation [25], the critic
value can be approximated by a neural network as (2). The
critic learning depends on minimizing the error between the
target value yi and the current value estimation (TD error, as
seen in (3)).

∇θπJ ≈ 1

N

N∑

i=1

∇aQ(s, a| θQ)|s=st,a=π(st)∇θππ(s| θπ)|s=st
(1)

Q(st, at) = E[rt + γQ(st+1, π(st+1))] (2)



L(θQ) = 1

N

N∑
i=1

(yi −Q(si, ai| θQ))
2

yi = ri + γ · Q̂(si+1, π̂(si+1| θπ̂)|θQ̂)

(3)

where N in equation (2) and (4) is the batch size of sampling.
Two target networks are updated by copying the corresponding
networks with a delay factor τ to stabilize learning.

θQ̂ = τ · θQ + (1− τ)θQ̂

θπ̂ = τ · θπ + (1− τ)θπ̂
(4)

B. Constrained Markov Decision Process (CMDP)

CMDP extends the MDP by introducing an immediate
constraint cost d(st, at) just like reward and an upper bound
d0 on the expected cumulative constraint cost Jπd . The RL
problem in CMDP can be expressed as:

max
θπ

JπR = E[

∞∑

t=0

γtrt], s.t. J
π
d = E[

∞∑

t=0

γtdt] ≤ d0 (5)

IV. APPROACH

In this section, we first introduce the architecture and
learning procedure of our two-stage safe RL method in Section
IV.A. Afterwards, we give detailed explanations for the two
learning stages in Section IV.B and IV.C, respectively.

A. Architecture

Fig. 1 shows the architecture of our approach. We design
a two-stage safe RL method, which consists of a safeguard
mechanism and an adaptive reward function to assist model-
free RL (DDPG) in ensuring safety during learning. The

safeguard mechanism contains two modules: a rule-based
safeguard module, a data-driven safeguard module. These
modules work at different learning stages to jointly guarantee
the agent’s safety.

The pseudo-code of the two-stage safe RL algorithm is
summarized in Algorithm 1. In the first learning stage (the
blue part in Fig.1), DDPG and data-driven safeguard module
have not been trained well because of lacking training data, we
activate the rule-based safeguard module after DDPG with the
reward objective of learning a safe policy at low driving speed.
We store unsafe transitions monitored by the safeguard module
(st, at,−, rt, dt) and safe transitions applied to environment
(st, a

safe
t , st+1, rt, dt) in replay buffer. Then, data in the replay

buffer can be used to update DDPG and improve the accuracy
of the data-driven safeguard module. Once the data-driven
safeguard module can reliably detect and correct the unsafe
action from DDPG, the learning process enters the second
stage of learning (the green part in Fig.1), where the rule-based
safeguard module is replaced with the data-driven safeguard
module and the reward function changes to pursue a safe,
efficient and stable racing policy. To sum up, the proposed two-
stage algorithm is safe to learn from scratch and alleviates the
requirement of expert prior knowledge in terms of dependence
degree and time scope. Therefore, the proposed algorithm is
suitable for the safety-critical autonomous driving task. For
the high-speed racing task in this paper, safety is expressed
as a single constraint about the minimum distance between
the agent and two road boundaries. We denote the threshold
of safety constraint as Ts. In order to further accelerate the
optimization of policy on the basis of safety satisfaction, we set
a lower bound of driving speed constraint as Tv . The detailed
design of each learning stage is described below.

B. The first learning stage

During the first learning stage, we use a rule-based safe-
guard module with an adaptive reward to guide DDPG con-
vergence and use the data generated by driving policy to train
the data-driven safeguard module. As the current goal of policy
learning is to solve safety first at low driving speed, the rule-
based module consists of a kinematic bicycle model and a
proportional regulator.

The bicycle model is commonly used for describing the ve-
hicle dynamics and has been proved to have the advantages of
its simplicity and accurate approximation at low accelerations
[26-31]. Therefore, we choose it to check the short-term future
trajectory generated by DDPG. The condition of checking
safety is to determine whether the next state predicted by
the dynamics model is safe and the agent can survive one
more step beyond the next state under the maximum steering
correction. If this condition is satisfied, the current action from
DDPG does not need to be corrected because this module has
enough ability to avoid danger by correcting at the next step,
or an alternate safe action will be provided by a proportional
regulator at the current step. Different from other rule-based
methods of pursuing an optimal solution by expert efforts, we
prefer to use coarse corrections to only focus on getting out of

safeguard mechanism contains two modules: a rule-based
safeguard module, a data-driven safeguard module. These
modules work at different learning stages to jointly guarantee
the agent’s safety.

The pseudo-code of the two-stage safe RL algorithm is
summarized in Algorithm 1. In the first learning stage (the
blue part in Fig.1), DDPG and data-driven safeguard module
have not been trained well because of lacking training data, we
activate the rule-based safeguard module after DDPG with the
reward objective of learning a safe policy at low driving speed.
We store unsafe transitions monitored by the safeguard module
(st, at,−, rt, dt) and safe transitions applied to environment
(st, a

safe
t , st+1, rt, dt) in replay buffer. Then, data in the replay

buffer can be used to update DDPG and improve the accuracy
of the data-driven safeguard module. Once the data-driven
safeguard module can reliably detect and correct the unsafe
action from DDPG, the learning process enters the second
stage of learning (the green part in Fig.1), where the rule-based
safeguard module is replaced with the data-driven safeguard
module and the reward function changes to pursue a safe,
efficient and stable racing policy. To sum up, the proposed two-
stage algorithm is safe to learn from scratch and alleviates the
requirement of expert prior knowledge in terms of dependence
degree and time scope. Therefore, the proposed algorithm is
suitable for the safety-critical autonomous driving task. For
the high-speed racing task in this paper, safety is expressed
as a single constraint about the minimum distance between
the agent and two road boundaries. We denote the threshold
of safety constraint as Ts. In order to further accelerate the
optimization of policy on the basis of safety satisfaction, we set
a lower bound of driving speed constraint as Tv . The detailed
design of each learning stage is described below.

B. The first learning stage

During the first learning stage, we use a rule-based safe-
guard module with an adaptive reward to guide DDPG con-
vergence and use the data generated by driving policy to train
the data-driven safeguard module. As the current goal of policy
learning is to solve safety first at low driving speed, the rule-
based module consists of a kinematic bicycle model and a
proportional regulator.

The bicycle model is commonly used for describing the ve-
hicle dynamics and has been proved to have the advantages of
its simplicity and accurate approximation at low accelerations
[26-31]. Therefore, we choose it to check the short-term future
trajectory generated by DDPG. The condition of checking
safety is to determine whether the next state predicted by
the dynamics model is safe and the agent can survive one
more step beyond the next state under the maximum steering
correction. If this condition is satisfied, the current action from
DDPG does not need to be corrected because this module has
enough ability to avoid danger by correcting at the next step,
or an alternate safe action will be provided by a proportional
regulator at the current step. Different from other rule-based
methods of pursuing an optimal solution by expert efforts, we
prefer to use coarse corrections to only focus on getting out of

Algorithm 1 A two-stage safe RL algorithm

1: Initialize parameters of DDPG θπ , θQ, θπ̂ , θQ̂, the data-
driven safeguard module ξ (Lyapunov function), ω (dy-
namics model), replay buffer Buf

2: for i = 0 to maximum episode do
3: Train w using data from Buf by (13)
4: for j = 0 to maximum step do
5: Select at from DDPG with exploration noise.
6: if the data-driven safeguard module is not ready then
7: Enter the first learning stage
8: Get safe action asafet through the rule-based safe-

guard module by (6), apply it to environment
9: Store transitions before and after safeguard in Buf

10: Update DDPG with an adaptive reward by (1-4, 7)
11: Train ξ, ω using data from Buf by (2-4)
12: else
13: Enter the second learning stage
14: Get safe action asafet through the data-driven safe-

guard module by (11,12), apply it to environment
15: Store transitions before and after safeguard in Buf
16: Update DDPG with an adaptive reward by (1-4, 8)
17: Train ξ, ω using data from Buf by (2-4)
18: end if
19: end for
20: end for

danger, and let the DRL module search the optimal solution
with the adaptive reward. The regulator is formulated as:

steersafet =





k1ψt + k2 ·∆dist if dîst+1|st, at < Ts or
dîst+2|ŝt+1, max steer

< Ts

steert fromDDPG otherwise

accelsafet =





give a brake if(steersafet not from DDPG)
and (steer not high enough)

accelt fromDDPG otherwise
(6)

where dîst+1 and v̂t+1 are the next minimum distance from
two road boundaries and velocity computed by the dynamics
model, ∆dist is the distance between the car location and
the central road track, k1 and k2 are their coefficients. The
steering angle steert and acceleration accelt (as a general
term of throttle and brake) are the actions from DDPG.

The reward function in this stage encourages policy to stay
away from road boundaries and avoid large deviations from
the road axis at low driving speed, as shown in (7). In (7),
ψ dist = (cosψ − |sinψ| − |∆dist|), Vlow is the maximum
speed in this phase, ψ is the angle between road and vehicle
heading, v is the car speed and ∆t is the time interval between
two adjacent steps.

rt =





v ·∆t · ψ dist v ≤ Vlow
(Vlow − v) ·∆t · ψ dist v > Vlow and ψ dist ≥ 0

v ·∆t · ψ dist v > Vlow and ψ dist < 0
(7)

C. The second learning stage
As the training process goes on, the data-driven safeguard

module gradually becomes more reliable. We replace the

danger, and let the DRL module search the optimal solution
with the adaptive reward. The regulator is formulated as:

steersafet =





k1ψt + k2 ·∆dist if dîst+1|st, at < Ts or
dîst+2|ŝt+1, max steer

< Ts

steert fromDDPG otherwise

accelsafet =





give a brake if(steersafet not from DDPG)
and (steer not high enough)

accelt fromDDPG otherwise
(6)

where dîst+1 and v̂t+1 are the next minimum distance from
two road boundaries and velocity computed by the dynamics
model, ∆dist is the distance between the car location and
the central road track, k1 and k2 are their coefficients. The
steering angle steert and acceleration accelt (as a general
term of throttle and brake) are the actions from DDPG.

The reward function in this stage encourages policy to stay
away from road boundaries and avoid large deviations from
the road axis at low driving speed, as shown in (7). In (7),
ψ dist = (cosψ − |sinψ| − |∆dist|), Vlow is the maximum
speed in this phase, ψ is the angle between road and vehicle
heading, v is the car speed and ∆t is the time interval between
two adjacent steps.

rt =





v ·∆t · ψ dist v ≤ Vlow
(Vlow − v) ·∆t · ψ dist v > Vlow and ψ dist ≥ 0

v ·∆t · ψ dist v > Vlow and ψ dist < 0
(7)C. The second learning stage

As the training process goes on, the data-driven safeguard
module gradually becomes more reliable. We replace the

rule-based safeguard module with the data-driven safeguard
module to find a more elegant solution with CMDP theoretical
support. The objective of the second learning stage is to get a
safe, efficient and stable racing policy. The reward function
also changes adaptively to encourage policy to maximize
the effective distance along the road axis at each step for
completing tasks quickly and stably, as shown in (8).

rt =

{
∆l × (cosψ − |sinψ| − |∆dist|) for safe action
−100 for potential unsafe action

(8)
where ∆dist is the distance between the car location and the
central road track, and ∆l is the distance between the current
and next location.

Our data-driven safeguard module has two submodules,
which are based on Lyapunov stability theory and multi-
step prediction respectively. Our data-driven safeguard module
combines the advantages of them.

(i) Lyapunov-based safeguard submodule
Our Lyapunov-based safeguard submodule is inspired by

the Lyapunov-based a-projection proposed by [21]. Let πθ−1
denotes the previous policy and πθ is the current policy.
We build the Lyapunov function QLπ

θ−1
(st , at; ξ) which

works as the critic network of DDPG to assess safety of the
learned policy by Jπd in (1). The immediate constraint cost is
d(st, at) = 1[|∆dist| >1− Ts]. This definition of Lyapunov
function satisfies the positive-definite and one-step decease
condition for safe action region in Lyapunov stability theory.
Then we use the l2-projection to guide the policy optimization
in the direction of reducing Lyapunov value function, as shown
in (9):

aLy∗t = arg min 1
2

aLyt

∥∥∥aLyt − πθ(st)
∥∥∥
2

s.t. QLπ
θ−1

(st , a
Ly
t ; ξ)−QLπ

θ−1
(st , πθ−1(st); ξ) ≤ ε̃(s0)

ε̃(s0) = (1− γ)(d0 −Dπθ−1
(s0))

(9)
where aLyt is the action after Lyapunov-based correction,
D(s0) := E[

∑∞
t=0 γ

td(st)|π, s0] where d0 is the upper-
bound value and specifically d0 = 1 − Ts for our task. (9)
can be simplified by approximating the Lyapunov constraint
with its first-order Taylor series, as shown in (10):

aLy∗t = arg min
aLyt

1−η(st)
2

∥∥∥aLyt − πθ(st)
∥∥∥
2

+

η(st)
2

∥∥∥aLyt − πθ−1(st)
∥∥∥
2

s.t. (aLyt − πθ−1(st))
T
gLπ

θ−1
(st; ξ) ≤ ε̃(s0)

gLπ
θ−1

(st; ξ) := ∇atQLπ
θ−1

(st, at; ξ)
∣∣∣
at=πθ−1(st)

(10)
where η(s) ∈ [0, 1) is the mixing parameter that controls the
trade-off between maximizing reward and maintaining safety.
As safety in our task can be represented as a single constraint,
we can obtain the analytical solution to (10) as shown in (11).
In (11), λ∗ is the optimal Lagrange multiplier associated with
the safety constraint.

In this way, we have a theoretically safe and robust solution

with fast convergence after we obtained a feasible policy
from the first learning stage. Note that when the data-driven
safeguard module is activated, the current RL policy may
not yet ensure safety. Once this happens, the Lyapunov-
based submodule only guarantees that the updated policy
is safer than the current policy, but cannot guarantee zero
safety violation of the updated policy. To compensate for this
problem, we design a forward-looking submodule with multi-
step prediction of vehicle dynamics.
aLy∗t =(1− η(st))πθ(st) + η(st)πθ−1(st)−

λ∗(st) · gLπ
θ−1

(st; ξ)

λ∗(st)= [
(1−η(st))gLπ

θ−1
(st; ξ)

T (πθ(st)−πθ−1(st))−ε̃(s0)

gLπ
θ−1

(st; ξ)
T ·gLπ

θ−1
(st; ξ)

]
+

(11)
(ii) foresight safeguard submodule
Inspired by the single-step safety layer in [20], we develop

a foresight safeguard solution to handle complex driving prob-
lems with high dimension and high speed. For getting a timely
response to unsafe actions, this module learns a full dynamics
model with the power of deep neural network to endow policy
foresight by multi-step prediction. On the one hand, once a
danger is predicted in the multi-step future, the action from
the Lyapunov-based submodule needs to be further corrected
to avoid accidents timely. On the other hand, when safety is
guaranteed, the foresight submodule checks and corrects an
overly conservative action to avoid slow state changes due to
very low speed. Specifically, let t is the current time step, t+N
is the max time step of prediction, t+k, k ∈ [0, N] is the time
step of a predicted danger or very low speed within the safety
field, and f(s, a; ω) is the dynamics network with parameter
ω. If n-step predictions do not violate safety constraint Ts or
low limit of speed Tv , no correction is required.

Otherwise, we get an analytical solution of the positive-
definite quadratic objective shown in (12) with the single active
constraint by Lagrange multiplier and KKT conditions (the
proof is similar to the Proposition 1 of [20]).

a∗t = arg min
at

1
2

∥∥∥at − πLyθ (st)
∥∥∥
2

s.t. ŝt+k = f(st+k−1, π
Ly
θ (st+k−1); ω) 1 ≤ k ≤ N

ŝit+k < 1− Ts or ŝjt+k > Tv
â∗t+k = πLyθ (ŝt+k)− λ∗safegi(ŝt+k; ω)− λ∗speedgj(ŝt+k; ω)

a∗t =
â∗t+k
k

λ∗safe = [
ŝit+k+1−(1−Ts)

gi(ŝit+k; ω)
T gi(ŝit+k; ω)

]
+

λ∗speed = [
Tv−ŝjt+k+1

gj(ŝ
j
t+k; ω)

T
gj(ŝ

j
t+k; ω)

]
+

(12)
where πLyθ (st) is the action after Lyapunov-based correction,
gi(s

i; ω) and gj(s
j ; ω) are the action-gradient of the one-

step safety and speed constraint prediction which are ith value
si and jth value sj in the state vector, respectively. ŝ and â
represent the predicted state and action. Our dynamics network
has four fully connected (FC) layers and uses the shortcut
connection structure of ResNet [32] as shown in Fig. 2. This
network design can well represent the sensitivity of changes

in the action. The loss function is weighted MSE of vehicle’s
multiple sensors, as shown in (13).

Ldynamics =
1

M

M∑

i=1

N∑

n=1

kn
2

(snt+1 − fn(st, at; ω))
2 (13)

where M is the batch size, N is the number of sensors, sn

and fn represent the nth sensor from the sensor vector, kn is
the weighted coefficient.

V. SIMULATIONS AND DISCUSSION

A. Experimental setup

We conducted experiments on the open racing simulator
(TORCS) [22], which is widely used for learning an intelligent
vehicle because of its 3D visualization and a realistic physics
engine. The state is a 29-dimension vector from multiple
sensors consisting of an angle between agent direction and
track axis, 3 speeds along the longitudinal, transverse, Z axis
respectively, 19 distances between track edge and agent, a
distance between agent and track axis, 4 wheel rotation speeds
and an engine rotation speed. The action is a two-element
vector [steering; acceleration] ∈ [−1, 1]2 where steering and
acceleration have continuous values. We train and test our
method and baselines with a racing track named street1 which
contains many sharp turns, even hairpin bends. Furthermore,
we test these methods with five more complex tracks named
Aalborg, alpine1, alpine2, wheel2, etrack2 to check the
generalization of the learned policy in an unseen road. The
total length of the five tracks is about 5.77 times the length
of street1. And these tracks have smaller track widths, more
varied curves than street1. Besides, the five tracks also add
uphill and downhill sections. They are shown in Fig. 3.

To compare with the state-of-the-art works, we selected D-
DPG, DDPG + single-step safety layer from [20] (abbreviated
as DDPG+sl) and DDPG + Lyapunov-based a-projection from
[21] (abbreviated as DDPG+Ly) as baselines to verify the
effectiveness of our work. The reason for this selection is these
baselines inspire us (see details in RELATED WORK). Note
that since the baselines in [20, 21] are not directly applied to
the autonomous driving environment, we replace their original
rewards with the race driving reward proposed in [3], as
shown in (14). In addition, we use the ablation study to check
how much each module of our two-stage safe RL algorithm
contributes. We set four configurations: our two-stage method,
only second learning stage (abbreviated as only stage2), first
learning stage with Lyapunov-based safeguard submodule of
the second stage (abbreviated as stage1+ Ly-stage2), and first
learning stage with foresight safeguard submodule of the
second stage (abbreviated as stage1+ Fs-stage2).

R = vx(cosψ − |sinψ| − |∆dist|) (14)
The following metrics are used to evaluate safety, efficiency

and stability for the racing task. No. of unsafety: the total
number of safety violations during training and testing, re-
spectively. Notice that zero No. of unsafety only ensure there
is no danger, but cannot indicate whether the task is completed
or not. No. of success: the total number of completing the task.
Avg. speed (km/h): the average speed indicates how efficient

 fully
connected

network

 fully
connected

Layer

 Dynamic model architecture

FC

FC
 +

 R
eL

U

FC
 +

 R
eL

U

FC

R
eL

U

ResNet structure

FC
 +

 R
eL

U

+

 Dynamics model architecture

FC

FC
 +

 R
eL

U

FC
 +

 R
eL

U

FC

R
e

LU

ResNet structure

FC
 +

 R
eL

U

+

Fig. 2. Our dynamics network architecture

street1 Aalborgstreet1 Aalborg

(a) (b)
Fig. 3. (a): The structures and physics of track street1 (left) and one of
unseen tracks Aalborg (right), (b): Besides Aalborg, the structures of the
other four tracks (alpine1, wheel2, alpine2, etrack2 from left to right and
top to bottom respectively)

the agent drives with learned policy. Avg. angle (degree): the
average angle indicates how stable the learned policy to relieve
swing from side to side.

For all experiments, the actor and critic network of DDPG
have two FC hidden layers of (100, 100) and (500, 500) units,
respectively. All FC layers use ReLU activations except for
their output layers using tanh activations. The optimizers are
Adam with learning rate 0.0001 for actor and 0.001 for critic.
The size of replay buffer is 106. The discount rate is 0.95.
The architecture of Lyapunov critic net is the same as the
critic network. Its Ts is 0.9 to keep a small gap away from
safety limitation. The dynamics model of foresight safeguard
submodule uses a FC-ResNet structure shown in Fig. 2, and
each FC layer has 350 units. Its optimizer is Adam with
learning rate 0.0005. The batch size is 64. We set the max
number of episodes and steps per episode to 2000 and 10000
respectively for training on a NVIDIA GTX 1080Ti GPU.
B. Results

(i) Comparison with baselines:
We compare our algorithm with three baselines mentioned

above (DDPG, DDPG+Lyap, DDPG+sl) from five aspects:
driving safety, efficiency, stability, generalization and policy
convergence rate. The results of the first four aspects are
shown in TABLE II. In terms of No. of unsafety recorded
during training and testing, our algorithm achieves zero safety
violation when learning from scratch, while all baselines fail
to do this. The closed-form solutions for the safety constraint
in DDPG+sl and DDPG+Ly help DRL converge to a safer
policy than standard DDPG. As the safety layer of DDPG+sl
is pre-trained before RL policy learning, it has much lower
safety violations than DDPG+Ly , which learns both Lyapunov
function and RL policy from scratch. Failing to guarantee
safety in DDPG+sl is partly because short-sighted safety
prediction is hard to deal with dangerous situations in time
for complex high-speed racing tasks, and partly because the
dynamics model of DDPG+sl with simple network structure
have limited ability to give an action correction solution

exactly. The reasons for safety violations in DDPG+Ly can
be attributed to unreliable Lyapunov function at the beginning
of training and dissatisfaction of the assumption of the baseline
feasible policy. In addition, one-step TD (as shown in (3)) for
updating Lyapunov function is not foresighted enough.

Focusing on the second and third rows of TABLE II,
DDPG without safety constraints has the lowest number of
successes, and these unsuccessful episodes are all in danger.
Thanks to pre-training and the rule-based safeguard submodule
respectively, DDPG+sl and our algorithm are better learned in
the same training episodes than DDPG+Ly. However, even
in this case DDPG+Ly clearly shows an ability to ensure
safety during unsuccessful episodes. From the perspective of
policy performance, we observe that three methods of DDPG
with safety constraints perform higher efficiency and stability
than unconstrained DDPG, since these methods force the
policy to explore safe actions that are more likely to get a
high reward. Lyapunov-based safety solution in DDPG+Ly
has a lower rate of safety violations, smaller swing angle
than DDPG+sl. Although DDPG+Ly has a slight decrease
in speed than DDPG+sl, it can obtain a more stable and
smoother policy. And we further test the generalization of
these methods on a mixture of five complex unseen tracks
(Aalborg, alpine1, alpine2, wheel2, etrack2). This test task
is considered a success only if the agent can safely drive
through all five tracks. DDPG+sl, DDPG+Ly and our two-
stage safe RL algorithm also perform better than standard
DDPG. And we notice that the three methods of DDPG with
safety constraints have an obvious decrease in Avg. speed to
improve racing safety in new situations. DDPG+Ly always
keeps the agent safe but performs poorly to complete the
racing task. DDPG+sl has better generalization capability than
DDPG+Ly, but the larger angle swing of single-step safety
layer limits its ability to guarantee safety. Our method also
works well due to the multi-step safeguard dynamics model.

In addition, the comparison of policy convergence is shown
in Fig. 4(a). We calculate the average reward per decision
by (14). And the results show that DDPG with safety con-
straints helps policy convergence faster. The reward curve of
DDPG+Ly shows that the policy steadily converges to the
high-score solution. The curve of DDPG+sl presents a trend
of ladder rising style. Our algorithm shows a faster and more
stable convergence.

(ii) Ablation study
Our two-stage safe RL algorithm combines the advantages

of a Lyapunov-based safety solution and a foresight safety
solution with multi-step kinetics prediction to overcome base-
lines shortcomings and can function well for high-speed racing
tasks. In this section, we configured ablation experiments to
demonstrate the contributions of each algorithm component.
The results are shown in TABLE III. By comparing the
first two rows of TABLE III, we can see the first learning
stage is proved to be important for achieving safety during
learning, but it has no obvious effect on the performance of
the final policy. The performance of policy mainly depends
on the second learning stage. The last two rows of TABLE III

TABLE II
COMPARISON WITH BASELINES

Methods DDPG DDPG+sl DDPG+Ly Ours
Training in

street1
(2000

episodes)

No. of
unsafety 1735 458 816 0

Testing in
street1

(100
episodes)

No. of
unsafety 30 5 6 0

No. of
success 70 92 84 100

Avg.speed
(km/h) 103.89 122.96 120 127.07

Avg.angle
(degree) 4.78 4.1 3.86 3.96

Testing in
a mixture

of five
unseen
tracks
(100

episodes)

No. of
unsafety 96 35 0 0

No. of
success 4 57 18 74

Avg.speed
(km/h) 99.58 107.84 106.29 109.13

Avg.angle
(degree) 4.71 4.9 4.53 4.65

(a) (b)
Fig. 4. (a): The average reward per decision during training, (b): The
performance of the proposed two-stage safe RL algorithm with multi-step
prediction.

demonstrate the contributions of the two data-driven safeguard
submodules in the second learning stage.

The Lyapunov-based safeguard submodule in stage1+Ly-
stage2 (defined in Section V.A) starts to work after the
Lyapunov function has been trained well, but the RL policy
at that moment may not be feasible because it may not satisfy
safety. As a result, stage1+Ly-stage2 does not achieve zero
safety violation due to the same shortcomings as DDPG+Ly.
But Lyapunov-based policy is good at getting a stable policy.
The foresight safeguard submodule in stage1+Fs-stage2 is
started up after the dynamics model becomes reliable. It shows
zero safety violation during testing, but still has few safety
violations during training due to angle fluctuations brought
by action correction. To further verify the impact of foresight
on safety, we compare the performance of our two-stage safe
RL algorithm under different foresight steps. As shown in
Fig. 4(b), safety and efficiency increase with the number of
prediction steps from n = 1 to n = 5. Especially, our method
shows zero safety violation at n = 4 and 5. But due to
cumulative approximate error of the dynamics model, we can
also observe a declining trend from n = 6.

VI. CONCLUSIONS & FUTURE WORK
In this paper, we have presented a two-stage safe RL al-

gorithm for autonomous racing tasks. The proposed algorithm
combines the model-free RL with a safeguard mechanism and

TABLE III
ABLATION STUDY IN STREET1 TRACK

Methods

Training
(2000

episodes)
Testing (100 episodes)

No. of
unsafety

No. of
unsafety

No. of
success

Avg.speed
(km/h)

Avg.angle
(degree)

two-stage 0 0 100 127.07 3.96
only

stage2 331 0 94 127.18 4.12

stage1 +
Ly-stage2 506 0 92 123.73 3.97

stage1 +
Fs-stage2 48 7 84 126.03 4.34

an adaptive reward function to guarantee safety during learning
and accelerate policy convergence to an optimal solution. It has
provided an analytical solution to ensure safety of training
without elaborate expert fine design. We have evaluated it
on racing simulator TORCS, and the experimental results
indicated that our method (i) achieved 100% safety during
both learning and execution; (ii) converged faster to a more
efficient and stable policy than the most relevant baselines.
(iii) showed generalization capability in an unseen and more
complex racing task.

In our future work, we will extend this work to other model-
free RL algorithms. Further, we plan to test the proposed
algorithm in challenging roads with complex terrains, such
as mountainous or rural areas.

REFERENCES

[1] Garcı́ia J, Fernández F, “A comprehensive survey on safe reinforcement
learning,” Journal of Machine Learning Research, vol.16, no.42, pp.
1437-1480, 2015.

[2] M. Jaritz, R. de Charette, M. Toromanoff, E. Perot and F. Nashashibi,
“End-to-end race driving with deep reinforcement learning,” in Proc.
IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, QLD, 2018, pp. 2070-2075.

[3] Lau B, “Using keras and deep deterministic policy gradient to play
torcs,”[Online]. Available: https://yanpanlau.github.io/2016/10/11/Torcs-
Keras.html, 2016.

[4] Wang S, Jia D, Weng X, “Deep reinforcement learning for autonomous
driving,” arXiv preprint arXiv:1811.11329, 2018.

[5] P. Wolf, K. Kurzer, T. Wingert, F. Kuhnt and J. M. Zollner, “Adaptive
behavior generation for autonomous driving using deep reinforcement
learning with compact semantic states,” in Proc. IEEE Intelligent Vehi-
cles Symposium (IV), Changshu, 2018, pp. 993-1000.

[6] Shalev-Shwartz S, Shammah S, Shashua A, “Safe, multi-agent, re-
inforcement learning for autonomous driving,” arXiv preprint arX-
iv:1610.03295, 2016.

[7] Mustafa Mukadam, Akansel Cosgun, Alireza Nakhaei, Kikuo Fujimura,
“Tactical decision making for lane changing with deep reinforcement
learning,” in Proc.NIPS 2017 Workshop on Machine Learning for
Intelligent Transportation Systems, 2017.

[8] Hu Y, Nakhaei A, Tomizuka M, Fujimura K, “Interaction-aware decision
making with adaptive strategies under merging scenarios,” in Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Macau, China, 2019, pp. 151-158.

[9] C. Paxton, V. Raman, G. D. Hager and M. Kobilarov, “Combining
neural networks and tree search for task and motion planning in
challenging environments,” in Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp.
6059-6066.

[10] Alshiekh M, Bloem R, Ehlers R, Knighofer B, Niekum S and Topcu U,
“Safe reinforcement learning via shielding,” in Proc. AAAI Conference
on Artificial Intelligence, New Orleans, 2018.

[11] D. Isele, A. Nakhaei and K. Fujimura, “Safe Reinforcement Learning
on Autonomous Vehicles,” in Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Madrid, 2018, pp. 1-6.

[12] Ye C, Ma H, Zhang X, Zhang K and You S, “Survival-oriented
reinforcement learning model: An effcient and robust deep reinforce-
ment learning algorithm for autonomous driving problem,” in Proc.
International Conference on Image and Graphics, Springer, Cham, 2017,
pp. 417-429.

[13] S. Nageshrao, H. E. Tseng and D. Filev, “Autonomous Highway Driv-
ing using Deep Reinforcement Learning,” in Proc. IEEE International
Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 2019,
pp. 2326-2331.

[14] Baheri A, Nageshrao S, Tseng H E, Kolmanovsky I, Girard A, Filev D.
“Deep Reinforcement Learning with Enhanced Safety for Autonomous
Highway Driving,” arXiv preprint arXiv:1910.12905, 2019.

[15] Altman Eitan, “Constrained Markov Decision Processes,” CRC Press,
Florida, 1999, pp. 260.

[16] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel, “Con-
strained policy optimization,” in Proc. International Conference on
Machine Learning, Sydney, 2017, pp. 22-31.

[17] Wen M, Topcu U, “Constrained cross-entropy method for safe reinforce-
ment learning,” in Proc. International Conference on Neural Information
Processing Systems(NeurIPS), 2018, pp. 7450-7460.

[18] Yang T Y, Rosca J, Narasimhan K, Ramadge P J, “Projection-Based
Constrained Policy Optimization,” presented at International Conference
on Learning Representations (ICLR), Ethiopia, 2020.

[19] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz, “Trust region policy optimization,” in Proc. International
Conference on Machine Learning (ICML), 2015, pp. 1889-1897.

[20] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester,
Cosmin Paduraru, and Yuval Tassa, “Safe exploration in continuous
action spaces,” arXiv preprint arXiv:1801.08757, 2018.

[21] Chow Y, Nachum O, Faust A, Duez-Guzmn E, Ghavamzadeh M,
“Lyapunov-based Safe Policy Optimization for Continuous Control,”
arXiv preprint arXiv:1901.10031, 2019.

[22] Loiacono D, Cardamone L, Lanzi P L. “Simulated car racing champi-
onship: Competition software manual,” arXiv preprint arXiv:1304.1672,
2013.

[23] Hassan K Khalil, “Noninear systems,” Prentice-Hall, New Jersey, 2(5):5-
1, 1996.

[24] Chow Y, Nachum O, Duenez-Guzman E, Ghavamzadeh M, “A
lyapunov-based approach to safe reinforcement learning,” in Proc.
International Conference on Neural Information Processing System-
s(NeurIPS), 2018, pp. 8092-8101.

[25] Lillicrap T P, Hunt J J, Pritzel A, Heess N, Erez T, Tassa Y, et al.
“Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[26] J. Kong, M. Pfeiffer, G. Schildbach and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in Proc.
IEEE Intelligent Vehicles Symposium (IV), Seoul, 2015, pp. 1094-1099.

[27] Z. Xu, C. Tang and M. Tomizuka, “Zero-shot Deep Reinforcement
Learning Driving Policy Transfer for Autonomous Vehicles based on
Robust Control,” in Proc. International Conference on Intelligent Trans-
portation Systems (ITSC), Maui, HI, 2018, pp. 2865-2871.

[28] De Iaco R, Smith S L, Czarnecki K, “Universally Safe Swerve Ma-
noeuvres for Autonomous Driving,” arXiv preprint arXiv:2001.11159,
2020.

[29] M. Toromanoff, E. Wirbel, F. Wilhelm, C. Vejarano, X. Perrotton and F.
Moutarde, “End to End Vehicle Lateral Control Using a Single Fisheye
Camera,” in Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, 2018, pp. 3613-3619.

[30] Y. Nager, A. Censi and E. Frazzoli, “What lies in the shadows? Safe
and computation-aware motion planning for autonomous vehicles using
intent-aware dynamic shadow regions,” in Proc. IEEE International Con-
ference on Robotics and Automation (ICRA), Montreal, QC, Canada,
2019, pp. 5800-5806.

[31] P. Polack, F. Altch, B. d’Andra-Novel and A. de La Fortelle, “The
kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles?,” in Proc. IEEE Intelligent Vehicles
Symposium (IV), Los Angeles, CA, 2017, pp. 812-818.

[32] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778.

