
Closing the Dynamics Gap via Adversarial and
Reinforcement Learning for High-Speed Racing

Jingyu Niu
Research Center for Intelligent Computing Systems

State Key Laboratory of Computer Architecture, ICT, CAS
University of Chinese Academy of Sciences

Beijing, China

niujingyu17b@ict.ac.cn

Wei Li
Research Center for Intelligent Computing Systems

State Key Laboratory of Computer Architecture, ICT, CAS
University of Chinese Academy of Sciences

Beijing, China

liwei2019@ict.ac.cn

Yinhe Han
Research Center for Intelligent Computing Systems

State Key Laboratory of Computer Architecture, ICT, CAS
University of Chinese Academy of Sciences

Beijing, China

yinhes@ict.ac.cn

Yu Hu∗
Research Center for Intelligent Computing Systems

State Key Laboratory of Computer Architecture, ICT, CAS
University of Chinese Academy of Sciences

Beijing, China

huyu@ict.ac.cn

Guangyan Huang
School of Information Technology

Deakin University
Melbourne, Australia

guangyan.huang@deakin.edu.au

Xiaowei Li
Research Center for Intelligent Computing Systems

State Key Laboratory of Computer Architecture, ICT, CAS
University of Chinese Academy of Sciences

Beijing, China

lxw@ict.ac.cn

Abstract—Autonomous racing has lately gained popularity
because of its entertainment value and potential of advancing
autonomous driving in high-speed situations. These high-speed
racing efforts usually focus on a road domain with fixed dy-
namics. They cannot meet the challenge of policy adaptation
between domains with large dynamics gaps. Meanwhile, existing
policy adaptation methods either rely on experts to build new
environments for policy training, or only handle a small dynamics
gap for low-speed control tasks due to limited dynamics modeling
and rigorous data collection assumptions. To overcome these
drawbacks, we introduce DAARL, a novel policy adaptation
algorithm that uses adversarial and reinforcement learning to
bridge the large dynamics gap between different domains. It
has two training stages. In the first training stage, a domain
transfer function is learned by adversarial learning to better
capture the dynamics gap. The single domain transfer function
integrates with the source domain to implement the dynamics of
different target domains virtually without the help of experts. We
name these virtual domains the imaginary target domains. In the
second training stage, the knowledge of the source-domain policy
guides the reinforcement learning of a target-domain policy on
an imaginary target domain. It improves the convergence of the
target-domain policy. Five experiments have been conducted on
a racing simulator with different road domains. All results show
that DAARL outperforms baselines in terms of driving speed,

This work was supported by National Natural Science Foundation of China
under Grant No. 62176250 and No. 62003323, in part by the Innovation
Project of State Key Laboratory of Computer Architecture, ICT, CAS under
Grant No. CARCH5202 and No. CARCH5406.

*Corresponding author

stability, success rate, and domain scalability.
Index Terms—policy adaptation, reinforcement learning, ad-

versarial learning, autonomous racing

I. INTRODUCTION

Autonomous racing has recently received increasing atten-

tion. The relevant international autonomous racing competi-

tions include Roborace [1], Indy Autonomous Challenge [2],

F1/10 autonomous racing [3], and Autonomous Formula SAE

[4]. Autonomous racing not only keeps traditional racing en-

tertaining, but also facilitates the development of autonomous

driving in high-speed situations. These works primarily en-

deavor to find an optimal policy for a road domain with fixed

dynamics parameters (including the friction coefficient, the

rolling resistance coefficient, and roughness). However, always

driving fast and stably on roads with changing dynamics is

crucial for racing cars. For example, there are asphalt roads,

dirt roads, and roads with gathered water in the rally race

[5]. It is widely known that an optimal policy learned on the

road domain whose dynamics are known (called the source

domain) often fails to drive well on another road domain with

a large dynamics gap (called the target domain). Our goal

of this research is to adapt the racing policy between road

domains with large dynamics gaps. Because the development

of autonomous racing is complex and costly, it is necessary

to set up a simulation environment for each unknown road

978-1-7281-8671-9/22/$31.00 ©2022 IEEE

20
22

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-7
28

1-
86

71
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IJC
N

N
55

06
4.

20
22

.9
89

24
24

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 20,2022 at 03:15:43 UTC from IEEE Xplore. Restrictions apply.

domain to implement and test algorithms before they are

deployed in the real world [6]. Setting up a simulation envi-

ronment usually requires a lot of experts’ effort and time cost.

Therefore, we seek an efficient policy adaptation algorithm

that can meet both racing requirements. One is to drive as fast

and stably as possible on road domains with large dynamics

gaps. The other is to implement the algorithm using only the

existing source domain. There is no need to follow a serial

development process from building environments for new

domains to algorithm implementation and then to performance

testing, because algorithm implementation can be done in

parallel with building new environments. It accelerates the

early algorithm development of autonomous racing.

Our topic is further refined as RL-based policy adaptation

between domains with different dynamics, since deep rein-

forcement learning (DRL) [7] is a potential solution for racing

policy learning [8], [9]. It belongs to a subset of policy transfer.

There are two categories of previous works. One is to learn a

robust policy for all domains [10]–[18]. The learned policy is

sub-optimal due to the compromise between different domains.

And it performs worse as the dynamics gap becomes larger.

This category cannot meet the racing requirement of driving

as fast and stably as possible through all road domains.

The other category can achieve the above requirement

by learning an optimal policy for each domain. It contains

fine-tuning methods and source augmentation methods. Fine-

tuning methods [19]–[21] use the knowledge of the source-

domain policy (the source policy for short) to guide the

convergence of the target-domain policy (the target policy for

short). They converge faster and better than learning from

scratch. But these methods spend time building a training

environment for each domain by experts. Our requirement

of accelerating the development process is not met in such

methods. Source augmentation methods [22]–[25] can speed

up the development process. They learn a dynamics mapping

function to bridge the dynamics gap between a source domain

and a target domain. The dynamics of the target domain are

implemented by the source domain and the mapping function.

Thus, their algorithm implementation processes do not wait

for building new environments for target domains. However,

the optimization of their mapping functions and data collection

assumptions are designed for specific low-speed robotic tasks.

It does not provide sufficient modeling capability to bridge

a larger dynamics gap in complex racing tasks. The domain

scalability of these methods is poor because each new target

domain adds a new mapping function. Besides, these methods

do not exploit the potential of the source domain in improving

the convergence efficiency of the target-domain policy.

We propose a novel policy adaptation algorithm that uses

adversarial and reinforcement learning to satisfy all require-

ments of a racing challenge on road domains with different

dynamics. We call it DAARL for short. Our method combines

the best of the fine-tuning idea and the source augmentation

idea. It consists of two training stages. In the first training

stage, a domain transfer function is learned by adversarial

learning [26]. It is used to create virtual environments for

target domains based on an accessible source domain without

experts’ help. We call the virtual target environment the imag-

inary target domain since it does not exist in the simulation or

the real world. Thanks to the combination of the adversarial

loss, the domain classification loss, and the reconstruction loss,

a single domain transfer function better models the dynamics

of different domains using unpaired and randomly collected

data. Its domain scalability is improved. And a more accurate

imaginary target domain can be created to bridge a large

dynamics gap. In the second training stage, an optimal target

policy is trained on the imaginary target domain by DRL. We

exploit the knowledge of the source policy to guide the target

policy to converge faster and better than training from scratch.

The main contributions are threefold. First, we present

a novel policy adaptation algorithm between domains with

different dynamics by adversarial and reinforcement learning,

namely DAARL. The introduction of adversarial learning

allows us to better model the dynamics of different domains

by a single domain transfer function. As a result, our algo-

rithm bridges the large dynamics gap and has good domain

scalability. There are few restrictions on the collection of

training data, which is practical for high-speed applications.

The target policy is trained on an imaginary target domain,

which is the combination of the domain transfer function and

the source domain. It avoids reliance on experts. In addition,

we use the knowledge of source-domain policy to help the

target policy converge faster and better. Second, we apply two

representative reinforcement learning methods separately to

optimize the target policy. We also implement two separate

policy network structures that can exploit the source-policy

knowledge. It shows the flexibility of our algorithm. Third,

DAARL is applied to a challenging high-speed autonomous

racing task on roads with varied dynamics. We evaluate it in

the 3D racing simulator TORCS [27]. Experimental results

show that DAARL is superior to baselines in the aspects of

driving speed, stability, success rate, and domain scalability.

II. RELATED WORK

RL-based policy adaptation between different domains

mainly bridges two different domain gaps, namely the visual

gap and the dynamics gap. The visual gap occurs when the

policy input is the image, such as light and background

[28], [29]. It can be avoided when the non-visual multi-

sensor information is used as the input for control tasks. The

dynamics gap is induced by different physical parameters of

environments, such as the friction coefficient and the agent

mass. Our work focuses on bridging the dynamics gap. Related

methods can be broadly divided into two categories.

The main objective of the first category is to learn a

robust policy that fits all domains. It is subdivided into

domain randomization (DR) methods and domain-invariant

feature methods. DR methods build several source domains by

randomizing physical parameters for policy training [10]–[14].

However, DR methods rely on experts to set these parameter

ranges and engineer source domains. Domain-invariant feature

methods assume that high-level motion features of the source

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 20,2022 at 03:15:43 UTC from IEEE Xplore. Restrictions apply.

policy are also feasible for the target domain [15]–[18]. A

common feature is the trajectory. The first category uses the

idea of averaging domains [30] to achieve policy robustness.

The learned policy is sub-optimal. It cannot meet the racing

requirement of driving at its best on all domains. Moreover,

the policy is hard to converge on road domains with a large

dynamics gap.

The main objective of the second category is to learn their

optimal policies for different dynamics domains with the help

of the source domain. It satisfies the racing requirement above.

There are two subcategories, fine-tuning methods and source

augmentation methods. Fine-tuning methods [19]–[21] use the

knowledge of the source policy to guide the convergence of

the target policy efficiently. Nageshrao et al. [20] take the

parameters of a source policy as the initialization parameters

of a target policy at the beginning of training. We call this

intuitive approach directly fine-tuning (D-FT). Rusu et al.

[21], [31] propose the progressive neural network (PNN)

to fully reuse the hierarchical features of the source policy

throughout the whole training of the target policy. But, their

training processes need experts to build a new environment

for matching the dynamics of each target domain. It is time-

consuming for the algorithm development of a racing task.

Source augmentation methods [22]–[25] use the existing

source domain to train the target policy without building an

additional environment. First, they learn a mapping function to

compensate for the dynamics gap between the source domain

and the target domain. Then, the dynamics of a target domain

are equal to the dynamics of the source domain coupled

with the mapping function. The idea of augmenting a source

domain as an imaginary target domain for policy training saves

the time of developing a complex racing algorithm.

However, these methods are strict with data collection

during the learning of the mapping function. Each pair of

motion data collected from two domains in Neural-Augmented

Simulation (NAS) [22] has the same start state and action. It

is unfeasible to align data, such as speed, all the time for high-

speed racing tasks. A series of grounding methods [23]–[25]

collect data from specific policies. It restricts the generalization

ability of the mapping function and the diversity of data. The

mapping function in [23] uses a regression loss function to

optimize. [24] and [25] replace the regression loss with the RL

loss to improve the accuracy of modeling dynamics. However,

when both the mapping function and the target policy are

trained by DRL, their convergences are time-consuming and

difficult to reach. These disadvantages make them only suitable

for low-speed robotic tasks. Unlike the above methods, Jiang

et al. [32] assume the source domain is a hybrid simulator. It

combines an analytical dynamics model and partial learnable

parameters. The mapping function learns these parameters to

change the source domain to the target domain by adversarial

learning. Different domains collect training data from the same

policy. It is a strict assumption that prevents it from bridging a

large dynamics gap. Thus, [32] is difficult for complex racing

tasks. Because it still relies on experts to design a powerful

simulator and choose appropriate parameters. Moreover, as the

number of new target domains increases, so does the number

of the mapping functions in the above methods. Since this

subcategory always trains the target policy from scratch, it

makes no progress in accelerating policy training.

Our method is most relevant to source augmentation meth-

ods. The advantages of our method are as follows. (a) The

combination of the adversarial loss, the domain classification

loss, and the reconstruction loss is used in learning a dynamics

mapping function for domain transfer. We call this function

the domain transfer function. Note that some policy adaptation

methods [28], [29] have adopted adversarial learning for image

translation [33], [34]. They can only bridge the visual gap. Un-

like them, we use adversarial learning for dynamics translation.

The optimization of our domain transfer function models the

dynamics of different domains more accurately by sampling

random trajectories from all domains. It contributes to bridging

the large dynamics gap. This easier way of collecting data

is practical for high-speed racing tasks. (b) We use a single

domain transfer function to create different imaginary target

domains. It is scalable for increasing target domains. (c) We

incorporate the idea of fine-tuning methods into the training of

target policy. In this way, our method not only uses the source

policy to help the target policy converge effectively, but also

avoids the building cost of fine-tuning methods because of the

proposed imaginary target domain.

III. APPROACH

A. Problem Formulation

In this study, we consider a policy adaptation problem

to bridge the dynamics gap between different road domains

for a high-speed racing task. Each source domain S and

each target domain Ti, i = 1, 2, . . . is a Markov Decision

Process. This work assumes that different domains have the

same state space S, action space A, and reward function rt.
The difference between domains is the transition function

of dynamics, PS(st+1|st, at) and PTi(st+1|st, at). t is the

time step. We want to exploit the source domain to learn an

optimal target policy πTi(st). The objective is to maximize

the expected discounted sum of future rewards for the target

domain, EPTi [
∑∞

t=0 γ
trt], where the discount factor γ ∈ [0, 1]

controls the influence of future rewards.

B. DAARL Overview

In order to solve the formulated problem, we introduce an

novel algorithm to adapt the policy between domains with

different dynamics via adversarial and reinforcement learning.

We call it DAARL for short. Fig. 1(a) shows it is a two-

stage algorithm. The goal of the first training stage is to

learn a scalable domain transfer function (the blue block in

Fig. 1(a)) by adversarial learning. Its scalability is reflected

in that one function can cover the transfer between multiple

domains. The training data is the trajectories collected from

the source domain and different target domains by acting

randomly and setting random starting points. It is an easier

way than other source augmentation methods, because any

driver passing through one domain can provide valid data

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 20,2022 at 03:15:43 UTC from IEEE Xplore. Restrictions apply.

One Imaginary Target Domain T i

Source Domain S

Domain Transfer
Function

 Target Policy Optimization

Replay Buffer

Reinforcement Learning

Domain Transfer Function

Dynamics Model

Inverse
Dynamics Model

Discriminator

1True (, , ,)k t ta s C

DDPG-based / PPO-based
Target Policy Optimization

Two architectures of
learning the source-policy knowledge

Domain Transfer Function

Dynamics Model

Inverse
Dynamics Model

One Imaginary Target Domain T i

[By The Source-policy Knowledge]

Update

Collect Data

Interact With

Randomly
Collect Data

Source Domain S

Target Domains T i,
i=1,2,...

Domain Transfer
Function

Adversarial Learning

Update

1t̂s

ˆta

1ˆ ˆFake(, , ,)k t ta s Cor

True or
Fake?

Ĉ

Randomly Collect Data

ts
S-L1

S-L2

Ti-L1

Ti-L2

taS taTi

ts
S-L1

S-L2

Ti-L1

Ti-L2

taTi
D-FT PNN

Weights Assignment Fixed Weights

Learnable Weights

taTi

ts

1t̂s

ˆtaS
1,t ts rSource

Domain S
SSSource

DDDomain SSS

The First Training Stage

The Second Training Stage

(a)

(b)

(c)

(d)

C iT

Lj The j-th Layer

1 2i
KS T

2 outiKS T

1j jiKS T A Lateral Connection From The j-th
Layer Of The Source Domain to The
j+1-th Layer Of The Target Domain

{ }, 1,2,C i iS,T
1 1(, , , , ,)k t k t k t t ts a s a st 1, 1, 1, ,,1, 1

C S

Fig. 1. Overview of the proposed DAARL algorithm. (a) DAARL has two training stages. The first training stage (top) is to learn the domain transfer function
by adversarial learning. The training data is collected from the source and the target domain by randomly selecting starting positions and actions. The second
training stage (bottom) is to learn the target policy by reinforcement learning with the help of the source-policy knowledge. (b) The domain transfer function
consists of a dynamics model and an inverse dynamics model. The number of the domain transfer function does not increase as the number of the target
domains grows. (c) The imaginary target domain is implemented by the transfer function and the source domain. (d) The target policy adopts two network
structures to accelerate the convergence. D-FT (left) is a directly fine-tuning way [10]. PNN (right) is a progressive neural network way [21], [31].

for DAARL regardless of driving skill. The learned domain

transfer function bridges the dynamics gap between the target

domain and the source domain. Consequently, an imaginary

target domain (gray shaded block in Fig. 1(a)) is implemented

with the combination of the existing source domain and the

domain transfer function.

The goal of the second training stage is to optimize a

target policy (the yellow block in Fig. 1(a)) efficiently on

the imaginary target domain by reinforcement learning. The

efficiency of policy convergence is reflected in using the

knowledge of the source policy as the guidance of the agent’s

movement. It leverages the idea of fine-tuning methods, but

avoids building a new training environment by experts. The

detailed design of DAARL is described below.

C. Learning The Domain Transfer Function

Inspired by the scalability of the StarGAN method [35],

which uses only a single model for image translation between

multiple domains, we borrow this idea to learn a single domain

transfer function for bridging the dynamics gap between any

two domains rather than the visual gap. The details of the

first training stage of DAARL are depicted in Fig. 1(b).

The domain transfer function acts as the generator G of

the adversarial learning framework. It consists of a dynamics

model and an inverse dynamics model. The dynamics model

fdyn(τ−k, at, C) = ŝt+1 is trained to predict the next state

ŝt+1 based on the recent history of the agent state τ−k =
(st−k, at−k, . . . , st−1, at−1, st), the current action at, and the

domain label C∈ {S,Ti}, i = 1, 2, Note that the domain

label does not contain concrete road information. It is just

a unique indicator to classify different domains. The inverse

dynamics model finv(τ−k, st+1, C) = ât is trained to compute

the current action ât based on τ−k, the next state st+1, and

the domain label C.

The collected trajectories (τ−k, at, st+1, C) = (χ, C) are

treated as true data. They are fed into the domain transfer func-

tion G and output the predicted trajectories with the same do-

main label, (τ−k, ât, ŝt+1, C) = (χ̂, C) = (G(χ,C), C) =
(τ−k, finv(τ−k, st+1, C), fdyn(τ−k, at, C), C). The

predicted trajectories are treated as fake data. The domain

transfer function G aims at making the fake data true enough

to confuse the discriminator D (the green block in Fig. 1(b))

of the adversarial learning framework. The discriminator D in

our method has two functions: Dtf is to distinguish between

true trajectories χ and fake trajectories χ̂, and Dcls is to

classify each trajectory into its domain, i.e., D : χ →
{Dtf (χ), Dcls(χ)}. The optimization objectives of the first

training stage are described as follows.

1) Adversarial Loss: The objective of a GAN [26] can be

expressed as

Ladv =Eχ[logDtf (χ)]+

Eχ,C [log(1−Dtf (G(χ, C)))],
(1)

where the domain transfer function G tries to minimize this

objective while the discriminator D acts against it to maximize

this objective. To stabilize and improve the training process,

the Wasserstein GAN objective with gradient penalty [36], [37]

is used instead of (1), which can be expressed as

Ladv =Eχ[Dtf (χ)]− Eχ, C [Dtf (G(χ, C))]−
λgpEχh

[(||∇χh
Dtf (χh)||2 − 1)2],

(2)

where χh = εχ+(1−ε)χ̂, ε ∼ U [0, 1], λgp is the gradient

penalty coefficient.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 20,2022 at 03:15:43 UTC from IEEE Xplore. Restrictions apply.

2) Domain Classification Loss: An auxiliary classifier Dcls

is added to our discriminator. It works as a domain constraint

to help the convergence of D and G. The loss term for training

D is

Ldcls = Eχ, C [− logDcls(C|χ)], (3)

where Dcls(C|χ) denotes a probability distribution over do-

main labels when a true trajectory is entered into D. Minimiz-

ing Ldcls guides D to classify the true trajectory to its own

domain C. Meanwhile, the loss term for training G is

Lgcls = Eχ, C [− logDcls(C|G(χ, C))]. (4)

By minimizing Lgcls, G is expected to generate a more

accurate trajectory, which can confuse D and be correctly

identified with its corresponding domain C.
3) Reconstruction Loss: This work focuses on a high-speed

racing task to handle the large dynamics gap between different

road domains. The trajectory input χ contains non-visual

multi-sensor states and two-dimensional actions to avoid the

visual gap. Details of states and actions are shown in the last

paragraph of section IV-A. The reconstruction loss is designed

to ensure that G learns a detailed description of the dynamics

changes. For the dynamics model in G, the reconstruction loss

term Ldyn is a weighted mean squared error between the true

and the predicted next state, as shown in (5).

Ldyn =
1

M

M∑
j=1

N∑
n=1

bn(s
jn
t+1 − f jn

dyn(τ−k
j , ajt , C

j))
2
, (5)

where M is the batch size, N is the number of sensors, j is

the jth data in each sampled batch, sjnt+1 and f jn
dyn represent

the nth sensor from the true next state vector and the predicted

next state vector, respectively, on the same domain Cj , bn is

the weighted coefficient.

For the inverse dynamics model in G, the loss term Linv is

the L1 norm between the true and the predicted current action

vector, as shown in (6),

Linv = Eτ−k, st+1, C [||at − finv(τ−k, st+1, C)||1]. (6)

4) Full Objective: After combining the above mentioned

objectives, the full G loss function is

LG = w1Ladv + w2Lgcls + w3Ldyn + w4Linv, (7)

where w1, w2, w3, and w4 are the weighted coefficients that

balance the influence of different loss functions. The full D
loss function is

LD = −w1Ladv + w2Ldcls. (8)

The first training stage helps DAARL outperform previous

works in terms of prediction accuracy and domain scalability.

In addition, our discriminator is not only useful during the

training process. Its classification ability also plays a role

during the execution process to determine whether a road

domain has been learned. If it is a familiar domain, the agent

automatically switches to the corresponding policy trained by

our method. If not, we collect data from the new target domain

to update the domain transfer function and the discriminator.

D. Forming The Imaginary Target Domain

After finishing the first training stage, the source domain

and the domain transfer function form a virtual replacement

of the target domain, i.e., the imaginary target domain. This

imaginary domain implements the dynamics of the target

domain without building an actual new environment.

A detailed forming process of the imaginary target domain

is shown in Fig. 1(c). The current state st, the action intended

to use on the target domain aTi
t , and the domain label C = Ti

are entered into the dynamics model of the domain transfer

function. It predicts the next state ŝt+1 on the target domain

Ti. Then, we input the predicted next state ŝt+1, the current

state st, and the domain label C = S into the inverse dynamics

model of the domain transfer function. Its role is to compute

the appropriate current action âSt applied to the source domain.

âSt can transit the current state st to the next state st+1 on

the source domain, just like aTi
t does on the target domain.

Afterward, âSt interacts with the source domain to obtain

the next state st+1 and the reward rt. In this way, a tuple

(st, a
Ti
t , st+1, rt) is generated on the imaginary target domain.

It is useful for learning the target policy in the second training

stage. Note that although the dynamics model and the inverse

dynamics model are trained together in the first training stage,

they can be used independently.

E. Learning The Target Policy

After getting the imaginary target domain, the second train-

ing stage uses it as a training environment to optimize the

target policy by reinforcement learning. In order to obtain

higher efficiency of policy convergence than previous source

augmentation methods [22]–[25], we integrate the advantage

of policy guidance in the fine-tuning methods [19]–[21] into

our method to accelerate the convergence of the target policy.

The bottom part of Fig. 1(a) shows a complete RL process.

A target policy to be optimized (the yellow block) decides a

current action according to the current state, aTi
t = πTi(st).

aTi
t is used to interact with the imaginary target domain.

From the above explanation of Fig. 1(c), we receive a tuple

(st, a
Ti
t , st+1, rt) from each interaction. The tuple is accu-

mulated into the replay buffer. The target policy samples

tuples from the replay buffer and is updated by maximizing

EPTi
[
∑∞

t=0 γ
trt]. The reward function rt adopts the racing

reward proposed in our previous work [38], as shown in (9).

rt = Δlt(cosψt+1 − |sinψt+1| − |Δdist+1|), (9)

where Δlt is the distance traveled by the agent car between

the time step t and t+1, ψt+1 is the angle between the vehicle

heading and the track axis at time step t+ 1, Δdist+1 is the

distance between the car location and the track axis at time

step t+ 1.

Our effort on accelerating the policy convergence is shown

in Fig. 1(d). There are two policy architectures to exploit the

source-policy knowledge, so that the training process gets help

from some useful experiences. The D-FT solution on the left

of Fig. 1(d) is inspired by the directly fine-tuning method

[20]. The policies of different domains have the same network

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 20,2022 at 03:15:43 UTC from IEEE Xplore. Restrictions apply.

structure. At the beginning of optimizing a target policy by RL,

the network parameters of the source policy are assigned to the

target policy. The PNN solution on the right of Fig. 1(d) adopts

the progressive net methods [21]. The target policy network

has two columns. The first column (the red layers) from the left

of PNN represents the learned source policy. When training

the target policy, the parameters of the source-policy network

in the first column are fixed. Only the second column network

and the lateral connections between two columns are learnable.

As Fig. 1(d) is a two-layer network example, the second layer

of the target policy is shown as

hTi
2 = f(WTi

2 hTi
1 +KS1→Ti2h

S
1), (10)

where hTi
1 is the output of the first layer of the target policy,

hS
1 is the output of the first layer of the source policy, WTi

2

is the weight matrix of the second layer of the target policy,

KS1→Ti2 is the lateral connection weight matrix from the first

layer of the source policy to the second layer of the target

policy, f is a non-linear function.

We choose two state-of-the-art DRL algorithms to optimize

the above policy architectures for a high-speed racing task,

i.e., Deep Deterministic Policy Gradient (DDPG) [39] and

Proximal Policy Optimization (PPO) [40]. DDPG represents

the off-line RL. It contains an actor network and a critic

network. The actor network πTi(st|θπTi

) generates an action

aTi
t for the target policy. The critic network QTi(st, a

Ti
t |θQTi

)
is the state-action value function to measure the quality of a

state-action pair. We apply the above architectures to the actor

and critic network, respectively. For the D-FT solution, all

network parameters are learnable. For the PNN solution, the

weight matrix of the network column of the target policy and

the lateral connections are learnable. The weight matrix of the

network column of the source policy is fixed. To simplify the

description, we use θQ
Ti

and θπ
Ti

directly in the optimization

equations below. They mean optimizing the learnable parts of

their network parameters.

The critic network is trained by minimizing TD error,⎧⎨
⎩ L(θQ

Ti

) = 1
N

N∑
t=1

(yt −QTi(st, a
Ti
t |θQTi

))
2

yt = rt + γQ̂Ti(st+1, π̂
Ti(st+1

∣∣ θπ̂Ti

)|θQ̂Ti

)

, (11)

where N is the batch size of sampling, γ is the discount factor,

rt is the reward function. π̂Ti(st|θπ̂Ti

) and Q̂Ti(st, a
Ti
t |θQ̂Ti

)
are two other networks in DDPG. They correspond to the

actor network and the critic network. Their role is to copy

the network parameters with a delay factor τ for stabilizing

learning, {
θQ̂

Ti

= τθQ
Ti

+ (1− τ)θQ̂
Ti

θπ̂
Ti

= τθπ
Ti

+ (1− τ)θπ̂
Ti . (12)

The actor network is updated by

∇θπTiJ ≈ 1
N

N∑
t=1

∇aQ
Ti(s, a|θQTi

)|s=st,a=πTi(st)∇θπTiπTi(s|θπTi

)|s=st ,
(13)

where N is the batch size of sampling.

PPO represents the on-line RL. It is also an actor-critic

algorithm. Different from DDPG, PPO’s critic network is the

state-value function, V Ti(st|θV Ti

). Its loss function is

L(θV
Ti

) =
1

N

N∑
t=1

(Ât)
2
, (14)

where Ât is the estimated advantage function:

Ât =
e−1∑
j=0

γjrt+j + γV Ti(st+e|θV Ti

)− V Ti(st|θV Ti

). (15)

t + e in (15) is the time step when a terminal state of one

trajectory is reached. It varies from state to state.

The actor aims at maximizing (16) below,

L(θπ
Ti

) = Êt[L
CLIP
t (θπ

Ti

) + ξLent
t (θπ

Ti

)], (16)

where ξ is a weighted coefficient, LCLIP
t (θπ

Ti

) is a clipped

surrogate objective,

LCLIP
t (θπ

Ti

) =

min(
πTi
θ (at|st)

πTi
θold(at|st) Ât, clip(

πTi
θ (at|st)

πTi
θold(at|st) , 1− ε, 1 + ε)Ât).

(17)

It limits the disparity between the new target policy πTi
θ (at|st)

and the old target policy πTi
θold(at|st) for better convergence. ε

is usually 0.1 or 0.2. Lent
t (θπ

Ti

) is an entropy bonus to ensure

sufficient exploration.

These two fine-tuning solutions and two DRL algorithms

illustrate our method is common rather than the previous works

only implemented on a certain RL.

IV. EXPERIMENTS

A. Experimental Setup

Five experiments are designed to evaluate if our method can

better bridge the large dynamics gap between different road

domains for high-speed racing than prior studies. Since our

work aims to be beneficial for the early algorithm development

of an autonomous racing task with changeable road domains,

we use a 3D realistic racing simulator (TORCS) with different

road scenes to conduct experiments. The dynamics parameters

describing these road scenes include the friction coefficient,

the rolling resistance coefficient, and roughness. These exper-

iments use six TORCS roads, as indicated in Fig. 2. The roads

contain three groups of road dynamics (named asphalt, dirt,
sand) shown in Table I and four shapes displayed in Fig. 2.

Each experiment is represented by a blue arrow and a number.

We call these experiments DA�, DA�, DA�, DA�, and DA�
for short. The domains of DA� and DA� are two roads that

have the same shape but different dynamics. The purpose is

to eliminate the influence of other factors on the evaluation

of policy adaptation. The domains of DA�, DA�, and DA�
have different shapes and different dynamics. They are used

to further prove the practicability of our method. The shapes

of Road 1 to Road 4 include varied curves. Besides curves,

Road 5 and Road 6 contain uphill and downhill sections.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 20,2022 at 03:15:43 UTC from IEEE Xplore. Restrictions apply.

Road 1: asphalt + shape1

Road 2: sand + shape1

Road 3: sand + shape2 Road 5: asphalt + shape3

Road 6: dirt + shape4

1: a sh

Adaptation Direction From The Source Domain to The Target Domain

Road 4: asphalt + shape2

1 2

3

4

5

Policy Adaptation Between the
Same Shape And Different Dynamics

Policy Adaptation Between Different
Shapes And Different Dynamics

A

Fig. 2. The shapes and dynamics of 6 roads for performance testing.

TABLE I
DYNAMICS PARAMETERS OF ROAD DOMAINS

Road
Domains

Friction
Coefficient

Rolling Resistance
Coefficient Roughness Roughness

Wavelength
asphalt 1.2 0.001 0 1.0

dirt 0.85 0.005 0.02 30.0
sand 0.9 0.006 0.04 8.0

1) Baselines: We choose the following baselines based on

the condition that they try to get a target policy with limited

source domain resources.

• S-policy: A policy is trained to handle the dynamics of

a source domain, i.e., a source-domain policy.

• (Inv)Dyn [15]: It is a domain-invariant feature method.

First, a dynamics model of a source domain and an

inverse dynamics model of a target domain are learned

by regression. They are used as an action adaptation

function. Then, it assumes the state sequence of the

source policy is valid for the target domain. There is

no extra policy learning process in this method. The

target policy is obtained using the source policy and

the action adaptation function. Specifically, the dynamics

model predicts the state sequence based on the source

policy. The inverse dynamics model outputs the target

action to reach the same state on the target domain.

• GAT [23]: It is a representative source augmentation

method. First, it learns a mapping function by regression

to bridge the dynamics gap between two domains. The

mapping function consists of a dynamics model of a

target domain and an inverse dynamics model of a source

domain. Then, an action generated from the target policy

can be optimized from scratch by DRL on the source

domain with the help of the mapping function.

2) Two Types Of Our Method: Because we use two

solutions (i.e., D-FT and PNN) to accelerate the convergence

of the target policy in the second training stage of DAARL,

we named it DAARL-D and DAARL-P.

For the sake of fair comparison, different algorithms and

training techniques have the same network architecture for

dynamics, inverse dynamics, and policy networks, respectively.

3) Ablation Settings: We set two configurations for the

ablation study to check how much each part of our method

contributes.

• Stage1: DAARL without the help of fine-tuning in

the second training stage, that is, policy learning from

scratch. Its goal is to test the effect of adversarial learning

on capturing dynamics.

• Stage2: DAARL without the help of adversarial learning

in the first training stage. Its goal is to test the effect of

merging the fine-tuning technique into policy training. It

can be subdivided into Stage2-D and Stage2-P.

4) Evaluation Metrics: The following metrics are adopted

to evaluate these methods.

• Avg. Step-Reward: the average reward per decision

during policy training, the higher the better.

• Success rate: the percentage of the number of completing

the task in 100 testing episodes, the more the better.

• Avg. vel: the average speed of success testing episodes,

the faster the better.

• Avg. ang: the average angle of success testing episodes.

The smaller angle, the better stability the policy has.

• No. of INV-DYN: the number of inverse dynamics

models and dynamics models learned in all experiments.

The fewer number of models, the better scalability the

method has.

• Precision & Recall: two classical classification evalu-

ation indexes [41] used to test our discriminator, the

higher the better. Precision measures the probability of

trajectories classified as positive that are truly positive.

Recall measures the probability of positive trajectories

that are correctly labeled.

5) Implementation Details: For all experiments, the state

st at time step t is a 29-dimension vector from multiple sensors

consisting of an angle between the agent direction and the

track axis, three speeds along the longitudinal, transverse, and

Z axis of the car, respectively, nineteen distances between the

agent and the track edge, one distance between the agent and

the track axis, four wheel rotation speeds, and one engine

rotation speed. The action is a two-element vector [steering;

acceleration] ∈ [−1, 1]2 where steering and acceleration have

continuous values. The dynamics model is a two-layer LSTM

with 600 units. The inverse dynamics model has two fully con-

nected (FC) hidden layers with 256 units. The discriminator

has the same number of hidden layers as the inverse dynamics

model. The k of τ−k is 4. The actor and critic network of

DDPG have two FC hidden layers of (100, 100) and (500, 500)

units, respectively. The actor and critic network of PPO both

have three FC hidden layers of (400, 300, 300) units. All FC

hidden layers use ReLU activations. All optimizers are Adam.

We set both the max number of episodes and the maximum

number of time steps per episode to 2,000. All experiments

are trained on an NVIDIA GTX 1080Ti GPU.

B. Comparison with baselines
Table II shows the results of two solutions of our method

(i.e., DAARL-D, DAARL-P) and baselines on five experiments

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 20,2022 at 03:15:43 UTC from IEEE Xplore. Restrictions apply.

TABLE II
PERFORMANCE COMPARISON BETWEEN DAARL AND BASELINES BASED ON DDPG [32] AND PPO [35] ON ALL EXPERIMENTS

Methods
DA� DA� DA� DA� DA�

Avg.vel

(km/h)

Avg.ang

(degree)

Success

rate(%)

Avg.vel

(km/h)

Avg.ang

(degree)

Success

rate(%)

Avg.vel

(km/h)

Avg.ang

(degree)

Success

rate(%)

Avg.vel

(km/h)

Avg.ang

(degree)

Success

rate(%)

Avg.vel

(km/h)

Avg.ang

(degree)

Success

rate(%)

DDPG PPO DDPG PPO DDPG PPO DDPG PPO DDPG PPO DDPG PPO DDPG PPO DDPG PPO DDPG PPO DDPG PPO DDPG PPO DDPG PPO DDPG PPO DDPG PPO DDPG PPO

S-policy N/A N/A N/A N/A 0 0 85.83 87.00 4.66 4.63 60 61 N/A N/A N/A N/A 0 0 86.00 88.68 4.90 4.26 50 42 N/A N/A N/A N/A 0 0

(Inv)Dyn 83.13 82.51 6.01 6.12 62 59 86.13 87.91 4.60 4.41 70 77 83.45 80.79 5.71 4.34 50 48 86.29 84.24 4.64 4.02 68 56 49.70 43.71 4.15 4.21 38 34

GAT 85.24 84.04 4.29 5.31 70 76 93.73 92.51 4.61 3.92 80 82 87.05 85.39 5.44 4.97 64 64 93.85 92.66 4.55 5.44 80 76 63.92 58.12 3.95 3.82 50 58

DAARL-D 97.54 95.08 3.91 4.44 87 84 104.75 104.07 4.38 3.70 86 88 96.84 94.80 4.89 4.07 77 74 100.52 99.59 4.41 4.03 88 90 72.16 70.86 3.74 3.21 70 74

DAARL-P 93.23 91.05 3.95 4.71 84 82 106.76 107.18 4.17 3.63 90 88 92.11 93.70 4.95 4.52 72 70 103.58 101.21 4.33 3.96 85 90 66.76 64.50 4.15 3.45 76 78

(DA� to DA�) from different aspects. First, our method out-

performs baselines whether these algorithms are implemented

based on an off-line RL representative (DDPG) or an on-line

RL representative (PPO). Our method can be applied flexibly

with different RL algorithms. Second, we observe that our

method works best in all experiments. Road domains of DA�
and DA� have the same shape but different dynamics. They

demonstrate the policy adaptability of different approaches

without other road influencing factors. Road domains of DA�,

DA�, and DA� have different shapes and different dynamics.

They illustrate that DAARL is indeed a practical policy

adaptation method rather than being limited to domains with

the same shape. It should be mentioned that this research

focuses on adapting a driving policy to road domains with

the dynamics gap. The choice of the source domain needs to

cover the shape features of the target domain. For example,

in the DA� experiment, the source domain is an asphalt road

that includes some bend parts. It can create an imaginary road

with the shape of the source road and sand dynamics of the

target domain. So the policy trained on this imaginary road

has the ability to drive through different bends. Similarly, the

source domain of DA� includes uphill and downhill parts to

learn a useful policy for the target domain with slopes.

Third, we analyze performance comparisons of methods

in Table II. S-policy gets the lowest success rate in all

experiments. It demonstrates the necessity of policy adaptation

between road domains with different dynamics. Specifically, S-

policy’s success rates in DA� and DA� perform better than S-

policy’s success rates in DA�, DA�, and DA�. It is because

the policy trained on an asphalt road converges to a faster

and more aggressive point than the policy trained on a sand

road or a dirt road, where an asphalt road has a larger friction

coefficient and lower roughness than the other two domains.

The aggressive policy always makes the vehicle lose control

on a rougher road. (Inv)Dyn achieves a higher success rate

than S-policy in all experiments. It is because (Inv)Dyn makes

the source policy apply to the target domain with the help of

the action adaptation function. But the driving performance is

conservative due to the idea of trading off between different

domains. Different from the above methods, GAT and our

method pursue an optimal target policy. Their results in

Table II are faster and more stable than (Inv)Dyn. What’s

more, DAARL-D and DAARL-P, as two implementations of

our method, achieve the highest average velocity, the best

TABLE III
DOMAIN SCALABILITY COMPARISON BETWEEN DAARL AND BASELINES

FROM DA� TO DA�

Methods S-policy (Inv)Dyn GAT DAARL
No. of INV-DYN N/A 8 8 2

stability, and the highest success rate. There are two reasons

for these improvements. One is that our method combines

the adversarial loss, the domain classification loss, and the

reconstruction loss to train the domain transfer function. It

enhances the accuracy of building an imaginary target domain

for later policy training. The other is that our method leverages

the knowledge of the source-domain policy to increase the

efficiency of policy convergence.

Fourth, compared the results of DAARL-P with DAARL-

D, we observe that DAARL-D outperforms DAARL-P in

DA�, DA�, and DA�, whereas DAARL-P performs better

than DAARL-D in DA� and DA�. It illustrates an optimum

solution is different in different directions of policy adaptation.

An aggressive source policy plays a positive guiding role in

the early part of the convergence of the target policy, but a

negative role in the late part of convergence. Since the guiding

role of the source policy in DAARL-P is played all the time,

DAARL-P is suitable for transferring from a source domain

where we can learn a conservative policy. However, the driving

guidance of DAARL-D primarily affects the beginning of

policy training, so it performs better on policy adaptation from

an aggressive source policy than DAARL-P.

Table III shows a comparison of domain scalability between

our method and baselines by the No. of INV-DYN metric.

Baselines have poorer scalability than our method, except

that S-policy does not have a processing step for bridging

the dynamics gap. Specifically, (Inv)Dyn needs to learn three

dynamics models (for Road 1, Road 2, Road 5) and five inverse

dynamics models (for Road 1, Road 2, Road 3, Road 4, Road

6) from DA� to DA�. GAT needs to learn five dynamics

models (for Road 1, Road 2, Road 3, Road 4, Road 6) and

three inverse dynamics models (for Road 1, Road 2, Road 5).

Unlike them, DAARL learns only one dynamics model and

one inverse dynamics model to cover all road domains.

Additionally, as we described in the last paragraph of section

III-C, the classification ability of the discriminator in our

method is also useful during the execution process. It is used

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 20,2022 at 03:15:43 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
DOMAIN CLASSIFICATION CAPABILITY OF OUR DISCRIMINATOR

Road Domains asphalt sand dirt
precision(%) 96.92 95.69 98.41
recall(%) 98.43 95.01 96.78

TABLE V
ABLATION STUDY BASED ON DDPG AND PPO ON ROADS WITH THE SAME

SHAPE AND DIFFERENT DYNAMICS

Methods
DA� DA�

Avg.vel
(km/h)

Avg.ang
(degree)

Success
rate(%)

Avg.vel
(km/h)

Avg.ang
(degree)

Success
rate(%)

DDPG PPO DDPG PPO DDPG PPO DDPG PPO DDPG PPO DDPG PPO
Stage1 90.28 89.21 4.29 5.01 81 80 95.19 93.49 4.55 3.71 85 84

Stage2-D 88.41 88.44 4.25 5.16 78 78 97.04 95.11 4.60 3.90 80 81

Stage2-P 86.74 87.05 4.21 5.48 74 76 99.65 97.95 4.73 3.85 81 82

to determine whether the dynamics of the road ahead can

be matched with a policy we have learned. We check the

classification accuracy in Table IV by the classical metrics

(i.e., precision and recall). The result shows our discriminator

is reliable as an indicator of domain switching.

C. Ablation studies

Table V reports the contribution of each training stage of

our method in two experiments with the same road shape and

different dynamics (i.e., DA� and DA�). Compared with GAT

in Table II, Stage1 in Table V achieves higher success rates and

better driving performance in both experiments. It indicates

that the domain transfer function of our method can model

the change of dynamics better by introducing adversarial

learning. This improvement helps us create a more reliable

imaginary target domain for the second training stage. As a

result, our method can bridge a large dynamics gap. Stage2-D

and Stage2-P take advantage of two fine-tuning methods to

help the target policy converge better in the second training

stage of our method. They obtain faster and more stable target

policies in both experiments. In particular, Stage2-D in DA�
and Stage2-P in DA� perform best in the comparison of

Stage2-D, Stage2-P, and GAT in Table II, respectively.

Besides, Fig. 3 demonstrates the average rewards per deci-

sion of Stage1, DAARL-D, and DAARL-P during the target

policy learning in DA� and DA�. The shapes of the reward

curves of Stage1 converge slower and lower than DAARL-D

and DAARL-P in all experiments. The confidence intervals

of Stage1 are wider than DAARL-D and DAARL-P. These

facts indicate that incorporating the fine-tuning technique in

the second training stage of our method not only makes policy

converge better, but also accelerates the convergence. In other

words, it improves the convergence efficiency. Meanwhile,

whether based on DDPG or PPO, the reward curve of DAARL-

D is higher than DAARL-P in DA� and lower than DAARL-P

in DA�. It corresponds to the fourth analysis in section IV-B.

V. CONCLUSION

In this work, we have presented DAARL, a two-stage policy

adaptation algorithm based on adversarial learning and rein-

(a) (b)

(c) (d)

Fig. 3. The average reward per decision of Stage1, DAARL-D and DAARL-
P (a): DDPG-based policy training in DA�, (b): PPO-based policy training
in DA�, (c): DDPG-based policy training in DA�, (d): PPO-based policy
training in DA�

forcement learning, to bridge the large dynamics gap between

different domains for a high-speed racing challenge. First, we

learn a domain transfer function by adversarial learning. One

domain transfer function and one source domain can create

different imaginary target domains with large dynamics gaps.

Then, a target policy is trained on the corresponding imaginary

domain. During policy training, we use the guidance of the

source-domain policy to assist the policy to converge faster and

better. This solution is useful to accelerate the early algorithm

development of complex racing tasks, because the algorithm

implementation does not rely on experts to build an actual

new training environment. The algorithm implementation and

the build of an actual environment for later performance

testing can run in parallel. We have evaluated it on the racing

simulator TORCS. The results demonstrated that DAARL

converged effectively to a faster and more stable policy than

baselines.

REFERENCES

[1] L. Hermansdorfer, J. Betz, and M. Lienkamp, “Benchmarking of a
software stack for autonomous racing against a professional human race
driver,” in Proc. International Conference on Ecological Vehicles and
Renewable Energies (EVER), Monte-Carlo, Monaco, 2020, pp. 1-8.

[2] G. Hartmann, Z. Shiller, and A. Azaria, “Autonomous Head-to-Head
Racing in the Indy Autonomous Challenge Simulation Race,” arXiv
preprint arXiv:2109.05455, 2021.

[3] M. O’Kelly, H. Abbas, J. Harkins, C. Kao, Y. V. Pant, and R. Mang-
haram, “F1/10: An open-source autonomous cyber-physical platform,”
arXiv preprint arXiv:1901.08567, 2019.

[4] S. Koppula, “Learning a cnn-based end-to-end controller for a formula
sae racecar,” arXiv preprint arXiv:1708.02215, 2017.

[5] Fédération Internationale de l’Automobile, “History of FIA World
Rally Championship,” WRC Promoter GMbH. Paris, France. [Online].
Available: https://www.wrc.com/en/more/wrc-history/wrc-present/

[6] J. Culley, S. Garlick, E. G. Esteller, P. Georgiev, I. Fursa, I. V. Sluis
et al., “System design for a driverless autonomous racing vehicle,” in
Proc. International Symposium on Communication Systems, Networks

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 20,2022 at 03:15:43 UTC from IEEE Xplore. Restrictions apply.

and Digital Signal Processing (CSNDSP), Porto, Portugal, 2020, pp.
1-6.

[7] Richard S. Sutton and Andrew G. Barto, Reinforcement learning: An
Introduction, 2nd ed., Cambridge, MA, USA: MIT Press, 2018, pp. 1-2.

[8] M. Jaritz, R. de Charette, M. Toromanoff, E. Perot and F. Nashashibi,
“End-to-end race driving with deep reinforcement learning,” in Proc.
IEEE International Conference on Robotics and Automation (ICRA),
Australia, 2018, pp. 2070-2075.

[9] Y. Zhu and D. Zhao, “Driving Control with Deep and Reinforcement
Learning in The Open Racing car Simulator,” in Proc. International
Conference on Neural Information Processing (ICONIP), Cambodia,
2018, pp. 326-334.

[10] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “sim-to-real
transfer of robotic control with dynamics randomization,” in Proc. IEEE
International Conference on Robotics and Automation (ICRA), Australia,
2018, pp. 3803-3810.

[11] P. Cai, X. Mei, L. Tai, Y. Sun, and M. Liu, “High-speed autonomous
drifting with deep reinforcement learning,” IEEE Robotics and Automa-
tion Letters (RA-L), vol.5, no.2, pp. 1247-1254, 2020.

[12] W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the Unknown:
Learning a Universal Policy with Online System Identification,” pre-
sented at Robotics: Science and Systems (RSS), Massachusetts, USA,
2017.

[13] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac et al.,
“Closing the sim-to-real loop: Adapting simulation randomization with
real world experience,” in Proc. IEEE International Conference on
Robotics and Automation (ICRA), Canada, 2019, pp. 8973-8979.

[14] F. Sadeghi and S. Levine, “CAD2RL: Real single-image flight without
a single real image,” presented at Robotics: Science and Systems (RSS),
Massachusetts, USA, 2017.

[15] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J.
Tobin, P. Abbeel, and W. Zaremba, “Transfer from simulation to real
world through learning deep inverse dynamics model,” arXiv preprint
arXiv:1610.03518, 2016.

[16] A. Gupta, C. Devin, Y. X. Liu, P. Abbeel, and S. Levine, “Learning
invariant feature spaces to transfer skills with reinforcement learning,”
presented at International Conference on Learning Representations
(ICLR), Toulon, France, 2017.

[17] Z. Xu, C. Tang and M. Tomizuka, “Zero-shot deep reinforcement
learning driving policy transfer for autonomous vehicles based on robust
control,” in Proc. International Conference on Intelligent Transportation
Systems (ITSC), Maui, Hawaii, USA, 2018, pp. 2865-2871.

[18] Juan Camilo Gamboa Higuera, David Meger, and Gregory Dudek,
“Adapting learned robotics behaviours through policy adjustment,” in
Proc. International Conference on Robotics and Automation (ICRA),
Singapore, 2017, pp. 5837-5843.

[19] D. Isele and A. Cosgun, “Transferring autonomous driving knowledge
on simulated and real intersections,” presented at the Lifelong Learning
Workshop of International Conference on Machine Learning (ICML
Workshop), Sydney, Australia, 2017.

[20] S. Nageshrao, H. E. Tseng, and D. Filev, “Autonomous Highway Driving
using Deep Reinforcement Learning,” in Proc. IEEE International
Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 2019,
pp. 2326-2331.

[21] A. A. Rusu, M. Večerłk, T. Rothörl, N. Heess, R. Pascanu, and R.
Hadsell, “Sim-to-real robot learning from pixels with progressive nets,”
in Proc. Conference on Robot Learning (CoRL), Mountian View, USA,
2017, pp. 262-270.

[22] F. Golemo, A. A. Taiga, P. Y. Oudeyer, and A. Courville, “Sim-to-real
transfer with neural-augmented robot simulation,” in Proc. Conference
on Robot Learning (CoRL), Zurich, Switzerland, 2018, pp. 817-828.

[23] J. P. Hanna and P. Stone, “Grounded Action Transformation for Robot
Learning in Simulation,” in Proc. AAAI Conference on Artificial Intel-
ligence (AAAI), San Francisco, California, USA, 2017, pp. 3834-3840.

[24] H. Karnan, S. Desai, J. P. Hanna, G. Warnell, and P. Stone, “Reinforced
grounded action transformation for sim-to-real transfer,” presented at
IEEE/RSJ International Conference on Interlligent Robots and Systems
(IROS), Las Vegas, NV, USA, 2020.

[25] J. P. Hanna, S. Desai, H. Karnan, G. Warnell, and P. Stone, “Grounded
action transformation for sim-to-real reinforcement learning,” Machine
Learning, vol.110, pp. 2469-2499, 2021.

[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair et al., “Generative adversarial nets,” in Proc. Advances in Neural

Information Processing Systems (NeurIPS), Montreal, Canada, 2014, pp.
2672-2680.

[27] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Simulated car rac-
ing championship: Competition software manual,” arXiv preprint arX-
iv:1304.1672, 2013.

[28] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to Real Reinforcement
Learning for Autonomous Driving,” presented at British Machine Vision
Conference (BMVC), London, UK, 2017.

[29] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari,
“RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real,”
in Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), virtual, 2020, pp. 11157-11166.

[30] J. Liang, S. Saxena, and O. Kroemer, “Learning Active Task-Oriented
Exploration Policies for Bridging the Sim-to-Real Gap,” presented at
Robotics: Science and Systems (RSS), 2020.

[31] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu et al., “Progressive neural networks,” arXiv preprint
arXiv:1606.04671, 2016.

[32] Y. Jiang, T. Zhang, D. Ho, Y. Bai, C. K. Liu, S. Levine et al., “SimGAN:
Hybrid Simulator Identification for Domain Adaptation via Adversarial
Reinforcement learning,” in Proc. IEEE International Conference on
Robotics and Automation (ICRA), Xi’an, China, 2021, pp. 2884-2890.

[33] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image
Translation Using Cycle-Consistent Adversarial Networks,” in Porc.
IEEE International Conference on Computer Vision (ICCV), Venice,
2017, pp. 2242-2251.

[34] X. Huang, M. Liu, S. Belongie, and J. Kautz, “Multimodal Unsuper-
vised Image-to-Image Translation,” in Proc. European Conference on
Computer Vision (ECCV), Munich, Germany, 2018, pp. 179-196.

[35] Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim, and J. Choo, “StarGAN:
Unified Generative Adversarial Networks for Multi-Domain Image-to-
Image Translation,” in Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, USA, 2018, pp. 8789-8797.

[36] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” in Proc. International Conference on Machine
Learning (ICML), Sydney, Australia, 2017, pp. 214-223.

[37] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved Training of Wasserstein GANs,” in Proc. Advances in Neural
Information Processing Systems (NeurIPS), Long Beach, USA, 2017, pp.
5767-5777.

[38] J. Niu, Y. Hu, B. Jin, Y. Han, and X. Li “Two-stage Safe Reinforcement
Learning for High-Speed Autonomous Racing,” in Proc. IEEE Interna-
tional Conference on Systems, Man and Cybernetics (SMC), Toronto,
Canada, 2020, pp. 3934-3941.

[39] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa et
al., “Continuous control with deep reinforcement learning,” presented
at International Conference on Learning Representations (ICLR), San
Juan, Puerto Rico, 2016.

[40] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[41] J. Davis and M. Goadrich, “The relationship between Precision-Recall
and ROC curves,” in Proc. International Conference on Machine Learn-
ing (ICML), Pittsburgh, Pennsylvania, USA, 2006, pp. 233-240.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 20,2022 at 03:15:43 UTC from IEEE Xplore. Restrictions apply.

