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Abstract— Model predictive control is a promising method in
robot control tasks. How to design an effective model structure
and efficient prediction framework for model predictive control
is still an open challenge. To reduce the time consumption
and avoid compounding-error of the multi-step prediction
process in model predictive control, we propose a single-model
simultaneous framework, which uses single dynamics model to
predict the entire prediction horizon simultaneously by taking
all control actions with the current state as inputs. Based on this
framework, we further propose an adversarial dynamics model
that contains two parts. The generator provides a dynamics
model for the prediction process, while the discriminator
provides constraints that are hard to describe by manually
defined loss. This adversarial dynamics model can accelerate
training and improve model accuracy in unstructured environ-
ments. Experiments conducted in Gazebo simulator and on a
real mobile robot demonstrate the efficiency and accuracy of
the single-model simultaneous framework with an adversarial
dynamics model.

I. INTRODUCTION

Model Predictive Control (MPC) offers an effective tool
for addressing robot control tasks such as car racing [1], [2],
quadcopter flight control [3], and robotic arm gripping [4]. In
order to achieve continuous trajectory control, MPC needs to
predict the behavior of a dynamics system multi-steps ahead
in time. Some existing work refers to this process as the
multi-step prediction process [5], [6]. This prediction scheme
is accomplished with a dynamics model. Therefore, design
an efficient multi-step prediction framework and obtain a
sufficiently accurate model is important for MPC.

Due to the limitation of computation cost and model
capability, early MPC works [7], [8], [6] adopted the iter-
ative framework, which utilizes the one-step-ahead model
to complete the multi-step prediction process iteratively, as
shown in Fig. 1(a), where ut and st is control action and
state in time instance t, respectively. Therefore, the small
errors introduced by the dynamics model will be continu-
ously amplified in the prediction process and finally lead to
compounding-error [9]. In addition, the time complexity of
this process is O(N), where N is the length of prediction
horizon. Because the context information is not considered,
the capability of the model employed in iterative MPC is
limited to represent real dynamics [10].
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Fig. 1. This figure depicts different frameworks used for the multi-
step prediction process in MPC. Iterative framework uses a single model,
but requires iterations to predict future states. Multi-model simultaneous
framework uses multiple models to complete prediction simultaneously. We
propose single-model simultaneous framework to combine the advantages
of both. In this figure, we take prediction horizon N=3 as an example.

To alleviate the above-mentioned issues in the itera-
tive framework, researchers proposed methods predicting
a sequence of states simultaneously [11], [12], which we
call simultaneous framework. As shown in Fig. 1(b), this
framework can accelerate the multi-step prediction process
and mitigate the compounding-error problem by predicting
multiple future states at once. Mishra et al. [13], [14] have
presented a compromise approach between iterative frame-
work and simultaneous framework. This work accelerates the
prediction process by dividing the prediction horizon into
several segments and using a designed model to predict the
states in the segments simultaneously. However, this method
still suffers from the compounding-error problem because
the prediction between segments is iterative. As research
on the dynamics model continues to develop, the modeling
methods now have the ability to forecast the entire prediction
horizon simultaneously in the mobile robot control tasks.
Researchers Terzi et al. [11], [12] have proposed methods
that use multiple linear models to predict the entire prediction
horizon at a time. As illustrated in Fig. 1(b), each model
uses actions before the state to be predicted as inputs. This
simultaneous framework in the above-mentioned methods
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not only circumvents the compounding-error problem but
also improves the time efficiency of prediction. However,
multiple models are complex to design and computationally
burdensome. In our work, a more capable dynamics model
is proposed. Therefore, it is possible to use only one model
to complete the multi-step prediction process and the input
actions are extended to align with the prediction horizon. We
call this design the Single-Model Simultaneous framework,
hereafter referred to as the SMS framework.

In order to implement the SMS framework, as shown
in Fig. 1(c), a sufficiently powerful dynamics model is
required. The model in MPC is typically defined by two
kinds of methods. One kind is the traditional mathematical
model, such as dynamic mode decomposition [15]and bicycle
model [16]. The other is the learning-based model, such as
Gaussian process [17], [4] and neural network [18], [19],
[20]. The learning-based model can learn the dynamics
of complex environments that cannot be described by the
traditional mathematical model, and thus is more suitable for
the unstructured environment. However, existing learning-
based models [21], [22] uses only the distance between
the real and the predicted states to guide model training,
which typically does not contain context information such as
continuity between two adjacent states or features reflecting
different ground, e.g. grass, bricks. Based on adversarial
theory, we have built a discriminator that provides hard-to-
define constraints, achieving a more accurate dynamic model.
The data used to train the dynamic model was collected from
casual system, which determines that the model is casual.

In this paper, we propose an SMS framework that employs
an adversarial model for the multi-step prediction process of
MPC. The SMS framework uses a single model to predict the
entire prediction horizon simultaneously, which can reduce
the time complexity of the multi-step prediction process from
O(N) to O(1) and alleviate the compounding-error problem.
Under this framework, we propose an adversarial model that
consists of a generator and a discriminator. The generator
is used as a dynamics model in the prediction process. The
discriminator can provide additional constraints that are hard
to represent by manually designed analytical loss for the
generator. Therefore, this adversarial model can accelerate
the training and improve the model accuracy.

Our contributions in this paper are as follows:
• Propose the single-model simultaneous framework that

can decrease the time complexity of the multi-step
prediction process in MPC from O(N) to O(1), reducing
the number of required dynamics models and alleviating
the compounding-error problem.

• Build an adversarial dynamics model to obtain con-
straints that are difficult to express with hand-crafted
loss function, thus accelerating the training process and
improving the model accuracy.

• Propose a complete MPC approach that employs a
single-model simultaneous framework and an adversar-
ial dynamics model. The effectiveness of our approach
was demonstrated by deploying it on both Gazebo
simulator and a mobile robot.

II. RELATED WORK

We divide existing frameworks for solving the multi-step
prediction process into two categories: iterative and simul-
taneous. The iterative framework uses a model to predict
the state at the next moment based on the current state and
action, and then iterates to complete the prediction [23].
This framework alleviates the requirement for a dynamical
model [24] but shows non-negligible drawbacks in com-
plex environments, such as computational complexity and
compounding-error problem [10].

Recently, the simultaneous framework was proposed to
solve problems in the iterative framework. Terzi et al. [11]
combine multiple models to predict the entire prediction
horizon simultaneously, with each model taking historical
states and all the actions before the predicted moment as
inputs to predict one future state. In the follow-up, they
ensure robust constraints satisfaction by employing the set
membership approach to establish relationships between
models [12]. The simultaneous framework in the above
methods can accelerate the prediction speed, but multiple
models are computationally burdensome.

With the development of learning-based dynamics models
in recent years [1], [25], [26], more capable models have
emerged. For instance, using Gaussian process (GP) [27] to
compensate for biases in the fixed first-principles model [2],
or using Koopman canonical transform to express the dynam-
ics model as a lifted bilinear model [15]. However, when the
environment becomes more complex, such methods may fail
to accurately fit the real model. To improve the capability
of such model in complex environments, Li et al. [20] use
deep neural network as dynamics model while Lefèvre et
al. [19] employ multi-layer perceptron to build the dynamics
model. Mohajerin et al. [6], [18] leverage the recurrent neural
network to extract historical information and thus improve
prediction accuracy. But, the losses in the above methods
are manually designed analytical expressions, which means
constraints or characteristics such as context information and
features of different terrains are not considered.

Adversarial theory-based approaches like generative ad-
versarial networks can learn features or constraints that
cannot be represented by hand-crafted loss function. This
idea has been used to solve prediction problems in recent
years. Xu et al. [28] use discriminator to help the generator
learn the logic and connections between words that are
hard to define, thus encouraging the generator to produce
diverse and informative text. Janner et al. [29] address the
problem that manually designed loss can not fully reflect
domain distinctions when transferring learned policies to new
domains with different dynamics by using a discriminant
network. However, the input of model in SMS framework
includes a series of actions, which are not static historical
information, but rather the target to be optimized in MPC.
Inspired by the idea of generative adversarial networks, we
design an adversarial dynamics model to predict the entire
prediction horizon simultaneously and to obtain constraints
beyond the manually defined loss.
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Fig. 2. The entire scheme of SMS-MPC. The multi-step prediction process
uses a dynamics model to predict a series of states after the execution of
given actions.

III. PROBLEM STATEMENT

In this section, we will briefly introduce the overall struc-
ture of the multi-step prediction process and then describe
the role of dynamics model in this process. As shown in Fig.
2, the multi-step prediction process in MPC uses a dynamics
model to predict future states based on a given set of actions,
so as to provide basic information for selecting the most
appropriate actions.

A. Multi-Step Prediction in MPC

In our multi-step prediction process, the inputs include
the current state and a series of given action sequence.
At time t, the state st = [xt ,yt ,dt,vt]

T contains coordinates
[xt ,yt ] with xt ,yt ∈ R1, orientation dt ∈ R3 and velocity
vt ∈ R3. The action sequence can be created by a sampler.
We denote the total number of samples as K, and the
ith action sequence Ui = {ui

t,ui
t+1, ...,u

i
t+N−1}, i in 1, ...,K.

The action ut at time t contains acceleration and steering
angle. Using N to denote the prediction horizon and i to
denote a certain sampling, the outputs of the multi-step
prediction process is S′i = {si′

t+1,s
i′
t+2, ...,s

i′
t+N}, i in 1, ...,K.

To solve the path following task, the prediction result and
the target path Star = {star

t ,star
t+2, ...,s

tar
t+N} will be fed to

the optimizer. The optimizer will select the optimal actions
U∗ = {u∗t ,u∗t+1, ...,u

∗
t+N−1}, which will interact with the

environment to obtain the state of the next moment.

B. Nonlinear Dynamics Model

In the multi-step prediction process, the dynamics model
provides the basis for accurate prediction of future states
based on actions. The real dynamics model of environment
f ∗ is defined as

st+1 = f ∗(st,ut) (1)

The dynamics model in the single-model simultaneous
framework needs to learn the mapping from the current state
st and an action sequence Ui to the real future states Si =
{st+1, ...,st+N}. The approximate model f parameterized
with θ is defined as

S′i = f (st,Ui;θ) (2)

During the training phase, given (st,Ui,Si) obtained from
the collected data, the objective of f (st,Ui;θ) is to find

Fig. 3. The overall framework of our method. (Left) Single-model
simultaneous framework decreases the time complexity of the multi-step
prediction process from O(N) to O(1), not only reducing the number
of required dynamics models but also alleviating the compounding-error
problem. (Right) Adversarial model obtains additional constraints beyond
the manually defined loss to accelerate the training of dynamics model and
improve the multi-step prediction performance. τ stands for trajectory.

an optimal θ to minimize a Mean Squared Error Loss
(MSELoss) between real future states Si and predicted future
states S′i. During the testing phase, f outputs the predicted
state S′i based on st and Ui. Compared to the model in the
iterative framework, the model in the single-model simulta-
neous framework needs to have stronger fitting ability. Also,
the model will face a more complex loss space since the loss
will be computed based on a sequence of states. Thus, we
propose an adversarial dynamics model.

IV. METHODOLOGY
In this section, we first present the detailed implementation

of the SMS framework. Afterward, we introduce how to
design an adversarial dynamics model for the proposed SMS
framework. Finally, we describe a complete MPC scheme
realized by integrating these structures.

A. Single-Model Simultaneous Framework

As discussed in Sec III-A, in order to find the best action
sequence U∗i for the current state st at time t, the multi-
step prediction process needs to predict future state sequence
S′i of length N based on the current state st and given
actions Ui. Specifically, the sampler first generates a batch
of action sequences Ui according to the sampling policy πU .
As shown in Fig. 1, the generated action sequence are fed
into the dynamics model f simultaneously, which predicts
states during t +1 to t +N.

In the iterative framework, assume the deviation of dynam-
ics model is δ and the dynamics model is s′t+1 = f (st,ut)+δ .
The total prediction error will be accumulated in iterations
and become severe as the predict length N becomes larger.
For single-Model simultaneous framework, assume the devi-
ation of dynamics model is δseq and the predicted result is
S′t+1 = f (st,Ui;θ)+δseq. Since the prediction only conducted
once, the error will not accumulated. However, the single-
model simultaneous framework has strict requirements on
the capability of the dynamics model, and the loss is defined
based on sequence, which is more complex and hard to
converge. To address this obstacle, we propose a model
based on adversarial learning, which will be presented in
Subsection IV-B.
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Algorithm 1 Adversarial Model Training
1: Initialize generator G, discriminator D, prediction hori-

zon N, ratio of training times for discriminators and
generators k, hyperparameters α,β ,c.

2: Collect data D : {(Ui,S′i), ...} by executing a random
control policy in the training environment.

3: while not converged do
4: for k steps do
5: Sample a batch of m examples from D

Si = {si
t ,s

i
t+1, ...,s

i
N},Ui = {ui

t ,u
i
t+1, ...,u

i
N}

6: Stack si
t for N times to form vector Sbase

7: Predict state sequence S′i = Gθ (si
t ,Ui)+Sbase

8: ∆ω = 1
m ∑

m
i=1 Dω(st ,Ui,S′i)− 1

m ∑
m
i=1 Dω(st ,Ui,Si)

9: ωD = ωD + clip(∆ω ,−c,c)
10: end for
11: Sample a batch of m examples

Si = {si
t , ...,s

i
N},Ui = {ui

t , ...,u
i
N} from D

12: Stack si
t for N times to form vector Sbase

13: Predict state sequence S′i = Gθ (si
t ,Ui)+Sbase

14: ∆θ = α
1
m ∑

m
i=1 Dω(st ,Ui,S′i)+β

1
m ∑

m
i=1 ||S′i−Si||2

15: θG = θG +∆θ

16: end while

B. Adversarial dynamics model

In unstructured environments, there are many properties
hard to represent by manually defined loss, e.g. context in-
formation between states, state sequence patterns of different
surfaces such as grass and mud [30]. To make full use of the
above properties and make the model compatible with the
SMS framework, we propose an adversarial model structure.
In this work, the real system including the interaction be-
tween mobile robot and environment is hard to describe, so
we use an adversarial network to represent the mapping from
the current state and action sequence to the future state space.
The structure contains two multi-layer neural networks, one
is a generator G(s,U ;θ), the input includes the current state
st and a sequence of action Ui. The other is a discriminator
D(s,U,S′;ω) that estimates the probability that a sample
came from the real future state rather than G(s,U ;θ). The
discriminator can provide loss to the generator, as illustrated
in Fig. 3. In addition, the discriminator provides context
information that cannot be directly represented by manually
designed loss, especially dramatic state changes that rarely
occur in normal environments. The discriminator is only used
in the training process and does not increase the complexity
at test time.

To exactly match the dynamics model without cumber-
some fine-tuning parameters, we propose the following new
loss regularizer for the generative net G(s,U ;θ)

Lg = α
1
m

m

∑
i=1

Dω(st,Ui,S′i)+β
1
m

m

∑
i=1
||S′i−Si||2

where S′i is the predicted state sequence, α,β are the weights
of the regularizer, Dω(·) is the discriminator parameterized
by ω and m is the batch size. This regularizer can provide

Fig. 4. The mobile robot in real world (left) and Gazebo simulation
environment (right).

correct gradient direction to the generator in the early stage
of training, thereby accelerating the training phase. The loss
used to train the discriminator Dω(·) is

Ld =
1
m

m

∑
i=1

Dω(st,Ui,S′i)−
1
m

m

∑
i=1

Dω(st,Ui,Si)

where S′i is the future state sequence predicted by G(st,Ui;θ),
Si is the real state sequence and m is the batch size. Based on
this adversarial framework, we outline the training phase of
our proposed algorithm to approximate the dynamics model
in Algorithm. 1. For more training tricks and hyperparam-
eters utilized in this paper to enhance training stability and
streamline the training process, please refer to WGAN [31].

C. MPC Design

In the previous subsection, we showed the SMS frame-
work, and an adversarial network model. In this subsection,
we provide a brief discussion on the MPC design.

Basically, our simultaneous predictive process and adver-
sarial model can be used with multiple sampling policies
such as MPPI [32], CEM [33], and random policy. In this
paper, we use CEM as the sampling policy. This policy can
adjust the sampling strategy based on the optimal actions to
obtain better sampling results.

As previously mentioned, the objective of the MPC pro-
cess is to find a set of control actions U∗ that optimizes
the plant behavior over a given prediction horizon N based
on the current state and a given loss. The loss is defined
based on tasks and used to show the effect of the controller
completing the task. Therefore, we define the corresponding
cost function for the path-following task as

LU = (Star−S′)T Q(Star−S′)+UT RU

where S′ is predicted future states based on action sequence
U , Star is the target state sequence, Q and R are information
matrices, where Q is positive semidefinite, R is positive-
definite. The optimal action selection process is illustrated
in Algorithm. 2 and Fig. 2 shows our SMS-MPC structure.
The control horizon is set to two to reduce the number of
optimizations required.

V. EXPERIMENTAL SETUP

This section outlines the platform we used in this work,
the details of parameters in SMS-MPC and how we collected
data to train the adversarial dynamics model.
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Algorithm 2 SMS-MPC
1: Initialize G net and D net with trained parameters,

prediction horizon N, maximum iteration K, hyperpa-
rameters Q,R.

2: Initialize target trajectory Star = {s1,s2, ...}.
3: while not reach the final target do
4: Update current state st
5: Determine next target state sequence Star of length

N based on current state st
6: for i=1,...,K do
7: Sample action action sequence Ui = {ui

1, ...,u
i
N}

by CEM strategy
8: Stack st for N times to form vector Sbase
9: Predict state sequence S′i = Gθ (st ,Ui)+Sbase

10: Calculate cost Li = (Star−S′i)
T Q(Star−S′i)

+UT
i RUi

11: end for
12: Compute U∗ = argminUi,i∈[1,K](Li)
13: Set ut to the first two actions of U∗, and execute ut .
14: end while

A. Platform

The platform used in this work, is a custom-built
differential steering ground robot (weight 68 kg; LWH
0.93m×0.7m×1.5m), as shown in Fig. 4. The ground robot
has four states: translational positions, translational veloci-
ties, attitudes, and rotational velocities. We use some of these
data for control, containing horizontal position, orientation,
linear velocity, and angular velocity.

The vehicle chassis can return the linear velocity and an-
gular velocity of the vehicle and subscribe control commands
by CAN bus. The chassis is also equipped with an industrial
computer, which installed an Intel i7-9700E CPU, 16GB
RAM, and an outdoor power bank with 150000 mAh. As
for sensors, two Velodyne lidar of VLP-32C and VLP-16,
two FLIR Blackfly S camera, a Bumblebee2 stereo vision
cameras, a NovAtel PwrPak7D-E2 GNSS-inertial integration
system were instrumented. In this work, we only use GPS, in-
ertial measurement unit (IMU), and states return from chassis
for accurate position and orientation estimation. We utilize
real-time kinematic (RTK) technology to provide positioning
information with centimeter-level accuracy. When combined
with IMU, the rate of position data can reach 50Hz, and the
accuracy of it is about 10 cm.

The software system was developed based on the Robot
Operating System (ROS) in Ubuntu. Industrial computer and
chassis communicate via CAN bus. We built a simulation
environment to evaluate the performance of the system
before real track tests, as shown in Fig. 4. In addition, the
vehicle chassis contains an RC transmitter which can be
used to remotely control the vehicle by an operator. The RC
transmitter has the highest priority and can interrupt CAN
bus messages to disable all motions in case of emergency.
In the real-world experiments, all computation was executed
on-board the vehicle in real-time.

B. Dataset

Our work conducts experiments on two datasets. The
dataset collected in the Gazebo simulator environment con-
tains trajectory samples with a total length of 39.8km. The
real environment dataset contains trajectory samples with a
total length of 12.1km. Each sample contains positioning
information, wheel speed readings, and the corresponding
steering and throttle commands. In real world, the vehicle
states are measured using on-board IMU and GPS, while
in the simulator environment the data is the ground truth
obtained directly from the simulator. During the data collec-
tion process, the vehicle is operated by actions sampled from
different distributions. The sampled actions are designed
to cover all possible action spaces as much as possible.
Specifically, the linear velocity command is sampled from
a normal distribution, with mean = 0.7 m/s, var = 0.1 and
resolution=0.01 m/s to cover more data and increase the
robustness. The angular velocity command is generated by
uniform random sampling with a range of -0.2 rad/s and 0.2
rad/s and at an interval of 0.01 rad/s.

C. Adversarial Dynamics Model Setup

The adversarial dynamics model contains two parts, the
generator is set with a four-layer fully connected network.
The neurons of each layer are 128, 256, 256 and 128.
the discriminator has the same network structure as the
generator.

The current state and a sequence of actions with the
length of prediction horizon are fed into the generator, where
the current state contains coordinates, orientation, angular
velocity, linear velocity. To accelerate the training process, all
data are normalized. The output δS of the dynamics model is
a sequence of changes of vehicle coordinates ,orientation and
velocity corresponding to the input state. The discriminator
takes current state with actions and predicted states as input.
The output of the discriminator is the probability that the
input future state sequence belongs to the real trajectory.
The discriminator will provide additional loss to training the
generator as described in Section IV-B.

VI. EXPERIMENTS

To demonstrate the effectiveness of the proposed algo-
rithm, we tested our algorithm on four aspects. First, the
time consumption of SMS framework is compared with
previous works. Second, the accuracy of adversarial model
is compared with previous works. Third, the functionality
of each module is verified by an ablation study. Finally, the
effectiveness of SMS-MPC is further demonstrated in the
simulation environment and on a real ground robot.

A. Model Accuracy and Speed Comparison

In this paper, the advantages of SMS-MPC are demon-
strated by the time consumption to complete the prediction
process and the accuracy of prediction. In addition, we
further verify the advantages of the adversarial model by con-
ducting an ablation study. The experiments were performed
in Gym [34], Gazebo simulator, and a real mobile robot.
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Fig. 5. The time taken by the methods in the SMS framework to complete
the prediction does not increase as the prediction length increases, indicating
that the time complexity of the multi-step prediction process decreases from
O(N) to O(1) in the SMS framework compared to the iterative framework.

The Gym environment contains two scenarios CartPole and
Pendulum. To be persuasive, we analyze the experimental
results on the real mobile robot. The detailed data can be
found in Table. I, where the column Time in the table
indicates the time taken to complete the multi-step prediction
process, and the column Accuracy indicates the rate of
predictions that lie within a certain threshold of ground truth.
The detailed data shows the advantages of our method in
terms of time and accuracy.

The dynamics models used for experiments include fixed
[24], DNN [20], and adversarial models. The fixed method
represents the traditional modeling approach. In Gym envi-
ronment, the fixed model is a ground truth model obtained
according to the simulator. In the Gazebo simulator and
real environments, the fixed models are empirically adjusted
classical linear models. The DNN represents the previous
learning-based approach and uses the same four-layer fully
connected neural network as in the generator and discrimina-
tor. The RNN method contains loops that can only be used
in an iterative framework, and its time complexity cannot
be satisfied on our mobile robot, so it’s not included in the
comparison. All models are trained and tested on the same
Intel Xeon E5-2650 v4 processor and Nvidia 2080Ti with a
batch size of 128, full precision (fp32).

As shown in Fig. 5, when using the DNN model as
dynamics model in the iterative framework (Iter-DNN), it
consumes more time compared to the fixed model (Iter-
Fixed), but when it is used in the SMS framework (SMS-
DNN), the time consumption no longer grows linearly with
prediction length. This means the time complexity is reduced
from O(N) to O(1). Since our adversarial model uses the
same network structure as the DNN model in SMS-SNN,
both take the same time consumption. A comparison of
the prediction accuracy calculated based on the euclidean
distance between each point of the predicted path and the real
point is shown in Fig. 6. Specifically, we sample different
initial states and a sequence of actions in test data, then
feed data to different models and calculate the deviations of
predicted results from the ground truth. From the results,
we can see that the learning-based DNN model is more

Fig. 6. The accuracy comparison between Iter-DNN and SMS-DNN
shows that the SMS framework can alleviate the cumulative error problem.
The comparison between SMS-DNN and our method shows that the
discriminator provides additional constraints and information to improve
the training effectiveness. In addition, our adversarial model has advantages
in accuracy over the classical fixed model.

Fig. 7. The training process shows that the loss decreases faster and better
after adding the discriminator.

advantageous than the fixed model in iterative framework, but
when the DNN model is used directly in the SMS framework
the accuracy is reduced due to the more complex model that
needs to be learned. The accuracy is improved after adding
the discriminator to form an adversarial model, indicating
that the discriminator can improve accuracy.

B. Ablation Study

To demonstrate the advantage of discriminator in the
adversarial model, we conducted an ablation study. As shown
in Fig. 7, the adversarial model with discriminator has a
faster and lower loss reduction during the training phase
compared to the one without discriminators. This demon-
strates that the discriminator has the potential to provide
additional constraints and information that are hard to include
by manually designed loss. In addition, As shown in Fig. 6,
the predictions are more accurate after adding discriminator
to DNN, indicating that the discriminators can help the model
learn more constraints that are hard to describe by manually
defined loss.

C. Path Tracking Task

The objective of the path tracking task is to design a
control system such that the center of mass of the vehicle
tracks desired trajectories Star. In this work, the desired
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TABLE I
DETAILED COMPARISON DATA.

Env Methods Accuracy Time[ms]

CartPole

Iter-Fixed 1.0±0.0 6.7±0.1
Iter-DNN 0.92±0.03 7.4±0.08

SMS-DNN 0.85±0.08 3.2±0.12
Our 0.95±0.01 3.2±0.11

Pendulum

Iter-Fixed 1.0±0.0 7.3±0.03
Iter-DNN 0.91±0.02 7.9±0.02

SMS-DNN 0.85±0.03 5.1±0.03
Our 0.92±0.02 5.1±0.02

Gazebo

Iter-Fixed 0.89±0.04 79±0.7
Iter-DNN 0.86±0.03 84±0.8

SMS-DNN 0.83±0.07 59±0.8
Our 91±0.05 59±0.9

Real

Iter-Fixed 0.87±0.09 71±1.9
Iter-DNN 0.81±0.07 78±2.0

SMS-DNN 0.77±0.10 55±1.9
Our 0.88±0.06 54±2.1

trajectories are collected by recording the state of the vehicle
that manually driven. The linear velocity along the desired
trajectory is set to 0.7 m/s, leaving only the angular velocity
command for the MPC algorithm to optimize.

The performance index of the task was formulated as
the root-mean-square (RMS) error of N pairs of (x,y)-
coordinates, o-orientation, between the desired trajectory Star
and the observed trajectory Sobs, that sampled at 10 Hz.
Considering we only execute the first few actions, the actions
obtained several steps later are less important. So we add a
discount λ to reduce the weight of the loss as the prediction
steps grow. We also add an action punishment to avoid
inactive actions, then we can define the cost function to be

c(S,U) = α
1
N

N

∑
i=1

λ
i||R� (sobs

i − star
i )||2 +βU ′

in which U ′ is the sum of the absolute values of all elements
in action sequence U . R is a coefficient vector, which is used
to reduce the weight of orientation error. This coefficient
can allow the car to steer at a large angle which can avoid
converging to a local optimum.

D. Simulation Experiment

SMS-MPC is first deployed in a simulator environment to
evaluate different parameter settings and test the ability to
resist noise or outliers of sensor data. The environment is a
road with sandy surface built in the Gazebo simulation, and
the goal is to complete the path tracking task. We set fixed
trajectories for the car to follow and use the same model as
the mobile robots in real-world, as shown in Fig. 4. In the
training phase, the adversarial model will be trained based
on the previously introduced data. In the testing phase, the
robustness of the learned model is tested by adding noise
to the sensor data. The deviations of the mobile robot using
different methods to follow a given path are summarized in
Fig. 8. The attached video has more experimental details.

E. Experiments in the Real World

Finally, the entire SMS-MPC was implemented on the
custom-built ground robot. The car drives in an outdoor area

Fig. 8. This figure shows the deviation of the mobile robot from the desired
path in Gazebo simulation after adding noise in sensor data that feed to the
dynamics model. Methods based on the SMS framework perform better than
methods based on the iterative framework, which means SMS framework
can help the model to learn the context-information which can alleviate the
effects of noise. In addition, the discriminator in the adversarial model can
help to learn the potential information contained in states and perform better
than other methods, while the fixed model is the most affected.

Fig. 9. Prediction error along the path (in meters) is marked with different
colors. The prediction error becomes larger when the robot passes through
the area covered by trees which can affect the GPS signal. Also, the actual
dynamics model becomes more complex when the robot travels on the dirt
ground. As a result, the prediction error becomes larger.

and the desired 110 meters long path includes slopes, dusty
ground, and grass surfaces. During the test, the linear velocity
speed is set to a fixed value 0.7 m/s, and the angular velocity
speed is controlled by SMS-MPC.

The controller runs at 10Hz, GNSS/IMU integrated system
runs at 50Hz. Other relevant parameters are listed in Table.
II. We counted the sum of cost prediction error over the
prediction horizon at each sampling time. The results are
shown in Fig. 9. SMS-MPC can run in different environments
and meet the time limit for running on mobile robots, see
the video for more details. In addition, due to the rapidity
of the SMS framework and the powerful expressiveness of
the adversarial model, SMS-MPC shows great potential in
unstructured environments.

TABLE II
PARAMETERS OF SMS-MPC PARAMETERS

Parameter Setting
Prediction horizon N 30

Linear velocity 0.7 m/s
Angular velocity bound [-0.2, 0.2] rad/s

λ 0.95
R [0.1,0.1,0.01]

Control horizon 2

10911



VII. CONCLUSION

In this paper, we propose SMS-MPC, which contains two
main innovations. The SMS framework can reduce the time
complexity of the multi-step prediction process in MPC
from O(N) to O(1), reduce the number of required dynamics
models and alleviate the compounding-error problem. Based
on this framework, we employ adversarial theory to build
a dynamics model, which can obtain additional constraints
beyond the hand-crafted loss to improve the training results.
In unstructured environments, we demonstrated in simulation
and a real mobile robot that this combination can improve
the accuracy and robustness of MPC and finally improve
performance for mobile robot in the path tracking task.
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simulation and trajectory prediction with gaussian process dynamics,”
in Learning for Dynamics and Control, 2020, pp. 424–434.

[18] N. Mohajerin, M. Mozifian, and S. Waslander, “Deep learning a
quadrotor dynamic model for multi-step prediction,” in IEEE Interna-
tional Conference on Robotics and Automation, 2018, pp. 2454–2459.

[19] S. Lefevre, A. Carvalho, and F. Borrelli, “Autonomous car following:
A learning-based approach,” in IEEE Intelligent Vehicles Symposium,
2015, pp. 920–926.

[20] Q. Li, J. Qian, Z. Zhu, X. Bao, M. K. Helwa, and A. P. Schoellig,
“Deep neural networks for improved, impromptu trajectory tracking
of quadrotors,” in IEEE International Conference on Robotics and
Automation, 2017, pp. 5183–5189.

[21] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” in Conference on Robot
Learning, 2020, pp. 1101–1112.

[22] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” Advances in neural information processing systems, vol. 31,
2018.

[23] M. A. Kamel, A. T. Hafez, and X. Yu, “A review on motion control
of unmanned ground and aerial vehicles based on model predictive
control techniques,” Journal of Engineering Science and Military
Technologies, vol. 2, no. 1, pp. 10–23, 2018.

[24] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control:
theory, computation, and design. Nob Hill Publishing Madison, 2017,
vol. 2.

[25] Y. Zhang, G. Tao, and M. Chen, “Adaptive neural network based
control of noncanonical nonlinear systems,” IEEE transactions on
neural networks and learning systems, vol. 27, no. 9, pp. 1864–1877,
2015.

[26] J. Zhang, B. Cheung, C. Finn, S. Levine, and D. Jayaraman, “Cautious
adaptation for reinforcement learning in safety-critical settings,” in
International Conference on Machine Learning, 2020, pp. 11 055–
11 065.

[27] C. D. McKinnon and A. P. Schoellig, “Context-aware cost shaping
to reduce the impact of model error in receding horizon control,” in
IEEE International Conference on Robotics and Automation, 2020,
pp. 2386–2392.

[28] J. Xu, X. Ren, J. Lin, and X. Sun, “Diversity-promoting gan: A
cross-entropy based generative adversarial network for diversified text
generation,” in Conference on Empirical Methods in Natural Language
Processing, 2018, pp. 3940–3949.

[29] M. Janner, I. Mordatch, and S. Levine, “gamma-models: Generative
temporal difference learning for infinite-horizon prediction,” Advances
in Neural Information Processing Systems, vol. 33, pp. 1724–1735,
2020.

[30] D. Silver, J. A. Bagnell, and A. Stentz, “Applied imitation learning
for autonomous navigation in complex natural terrain,” in Field and
Service Robotics, 2010, pp. 249–259.

[31] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative ad-
versarial networks,” in International conference on machine learning.
PMLR, 2017, pp. 214–223.

[32] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in IEEE International Conference on Robotics
and Automation, 2017, pp. 1714–1721.

[33] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” in Conference on Robot
Learning, 2020, pp. 1101–1112.

[34] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

10912


