
Neurocomputing 497 (2022) 227–238
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
STC-NAS: Fast neural architecture search with source-target consistency
https://doi.org/10.1016/j.neucom.2021.11.082
0925-2312/� 2021 Elsevier B.V. All rights reserved.
Zihao Sun a,c, Yu Hu a,b,c, Longxing Yang a,c, Shun Lu a,c, Jilin Mei a,c, Yinhe Han a,b,c,
Xiaowei Li b,c

aResearch Center for Intelligent Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
b State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
cUniversity of Chinese Academy of Sciences, Beijing 100049, China
a r t i c l e i n f o a b s t r a c t
Article history:
Received 28 May 2021
Revised 22 August 2021
Accepted 21 November 2021
Available online 27 November 2021

Keywords:
Neural architecture search
Consistency
Automatic
Jensen-Shannon divergence
Neural architecture search (NAS) has shown very promising results for automatically designing network
models. Most existing cell-based NAS approaches generate the target network model from a source
super-network, which usually confront inconsistency issues. In this paper, we propose a new NASmethod
named STC-NAS, a fast neural architecture search with source-target consistency, so that not only the
performance of the searched target model is improved but also the search process is boosted.
Specifically, during the search phase, we sample the source super-network to let the samples be consis-
tent with the target model. Moreover, we leverage the Jensen-Shannon divergence to ensure the samples
are optimized in the direction of being more similar to the target model. Experimental results demon-
strate that our method needs only 0.059 GPU-days to search on CIFAR-10. Benefited from its efficiency,
STC-NAS can directly search the target super-network on the target task datasets, achieving 2.42% test
error on CIFAR-10, 16.45% test error on CIFAR-100, and 24.2% test error on ImageNet datasets.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction Unfortunately, DARTS still suffers from serious inconsistency
Neural Architecture Search (NAS) is emerging as a new design
paradigm to automatically design neural networks. After defining
the search space that contains enormous neural networks, NAS
explores the search space with specifically designed search strate-
gies to find out the optimal network models. Recently, NAS has
shown remarkable performance gain beyond manually designed
networks on various tasks including classification [1,2], object
detection [3,4] and semantic segmentation [5,6].

At the early stages, reinforcement learning (RL) [2,7,8] and evo-
lutionary algorithms (EA) [9–11] are proposed to search for neural
networks. However, these methods often need to sample many
subnetworks and then train from scratch, which may consume
thousands of GPU-days to find a relatively good architecture even
on the small dataset CIFAR-10. To reduce the search cost, ENAS [12]
proposed to leverage weight sharing among the same operations in
different subnetworks, thus it only needs to optimize a super-
network that contains all possible subnetworks and the target neu-
ral network can be evaluated by inheriting the parameters from
the super-network directly. Afterwards, DARTS [13] proposed con-
tinuous relaxation of architecture parameters so that the architec-
ture parameters and network weights can be trained alternately
with gradient descent by solving a bi-level optimization problem.
issues. This is because DARTS needs to optimize all candidate oper-
ations in a cell that deviates from the target cell, but only retaining
the optimal operation on each edge by discretization at the end of
the search that can dramatically downgrade the training accuracy
of the super-network [14,15]. In addition, the softmax relaxation
can cause unfair competition among the different mixed opera-
tions, and the optimization is also very time- and memory-
consuming, so that most existing methods usually search in a
proxy mode. The proxy can either be a network proxy or a dataset
proxy. More specifically, the network proxy mode means the depth
and the width of the super-network in the search phase are shal-
lower and narrower than the target model for evaluation. However,
as network depth and width have significant impacts on conver-
gence [16,17], this network proxy modemay not lead to an optimal
solution. Besides, DARTS and its variants need to search on a proxy
dataset and then transfer the searched architecture to the target
dataset for evaluation, which may produce the suboptimal solution
as different datasets may have different distributions [18,19]. From
the above mentioned issues, we can summarize four inconsisten-
cies in the aspects of cell, discretization, depth/width, and task
dataset. As shown in Fig. 1, the cell optimization process of DARTS
is inconsistent, that is, it needs to optimize all candidate operations
in an edge but maintain only one operation in the final cell. More-
over, the process of selecting operations discretely is also inconsis-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.11.082&domain=pdf
https://doi.org/10.1016/j.neucom.2021.11.082
https://doi.org/10.1016/j.neucom.2021.11.082
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Fig. 1. The inconsistency issues of DARTS compared with our method STC-NAS.
DARTS optimizes all the operations during the search phase, and the architecture
parameter weights are very close, leading to the cell and discretization inconsis-
tencies. Also, it searches a shallower super-network on a smaller dataset, incurring
the depth and task dataset inconsistencies. Whereas our STC-NAS searches with the
source-target consistency to avoid the above issues..

Z. Sun, Y. Hu, L. Yang et al. Neurocomputing 497 (2022) 227–238
tent because the softmax function makes architecture weights
among candidate operations be close. The search process is time-
and memory-consuming due to the first two inconsistencies, so
DARTS has to search in a proxy mode, i.e., searching on a shallower
network and on a smaller dataset, leading to the depth and task
dataset inconsistency.

In this paper, we propose STC-NAS, a fast sampling-based differ-
entiable neural architecture search with source-target consistency.
We maintain the cell topology sampled from the source super-
network during the search process to be consistent with the final
target evaluated architecture. To ensure that the optimization pro-
cess of the sampled architecture is stable and consistent, we
replace the softmax function with the ReLU function to calculate
the weights of architecture parameters, thus preventing the com-
petition among different candidate operations. Moreover, we
leverage Jensen-Shannon divergence as an auxiliary loss for archi-
tecture parameters optimization. Finally, due to the consistent
sampling optimization process, our method is time- and
memory-efficient so that the network proxy and task dataset proxy
are no longer needed. Our contribution can be summarized as
follows:

� We develop a fast neural architecture search with source-target
consistency, named STC-NAS, which means that we maintain
the number of edges in the searched cell is the same as that
in the target cell. Thus it greatly reduces the resource consump-
tion and improves the search efficiency. As shown in Table 3,
our method can improve the batch size to 256 with 5.5GB of
GPU memory, but costs only 0.059 GPU-days to finish the
search, which is much more efficient than DARTS and other
methods.

� We use the ReLU function to independently update the archi-
tecture weights of each candidate operation without passive
competition against each other under the softmax relaxation,
228
and leverage Jensen-Shannon divergence as an auxiliary loss
for architecture parameters optimization, which can strengthen
the distinction among different candidate operations.

� Experimental results show that our method is very time- and
memory-efficient and can directly search on the target super-
network and task dataset without any proxy. STC-NAS achieves
2.42% test error on CIFAR-10, 16.45% test error on CIFAR-100,
and 24.2% test error on ImageNet, outperforming the state-of-
the-art works.

2. Related Works

Differentiable Architecture Search. Comparing to RL or EA
based architecture search, differentiable NAS optimizes the net-
work weights and architecture parameters alternatively using gra-
dient descent. ENAS [12] proposed to share the same weights
among different sub-networks if they have the same operation.
Though ENAS reduces the search cost significantly, the search
space is still discrete. To solve this problem, DARTS [13] relaxes
architectures into continuous space, making the architecture
search differentiable and hence more efficient. Unfortunately, the
weight sharing algorithm suffers from the instability issues, which
is named as discretization gap [14,15,20]. FairDARTS [14] forces
the values of architecture parameters towards either zero or one
so that the operations with very low weights can be easily
removed. But as shown in experimental results of FairDARTS, the
weights of many operations are close to one, which means the dis-
cretization gap still exists. Moreover, we leverage JS divergence
loss as the regularization to strengthen the distinction among dif-
ferent candidate operations, which is also different from Fair-
DARTS that introduces a zero-one loss to reduce the discretization
gap. SGAS [21] and ASAP [22] gradually prune redundant opera-
tions during the search process, hence the search space gradually
squeezes and approximates to the final target architecture. How-
ever, the greedy pruning method may remove important opera-
tions at the early stage before operations could be well trained.
P-DARTS [17] proposed to progressively increase the depth of the
super-network, but the depth of the super-network in the last
stage of the search process is still shallower than the target
super-network. Moreover, progressively increasing depth is not
an end-to-end solution. PC-DARTS [23] can directly search on large
datasets but at the price of utilizing only a subset of feature map
channels.

Sampling-based Differentiable Architecture Search. SNAS
[24] firstly leverages the Gumble-softmax technique to solve the
inconsistency problem between the performance of the derived
child network and the source super-network. However, the
super-network contains the whole graph which is not only differ-
ent from the derived architecture of the target network but also is
computation- and memory-consuming. Afterwards, GDAS [25] and
DATA [26] reduce the search cost by sampling discrete subnet-
work. However, these methods need to compute the softmax of
architecture parameters after each iteration, leading to competi-
tion among operations and preference of non-parameter opera-
tions. NASP [27] only propagates the proximal paths for each
edge in search, but the active paths of super-network still deviate
from the target-network as there is no connection for some edges
in the target-network. ProxylessNAS [28] addresses the OðnMÞ
memory complexity issue by sampling two paths (i.e., operations)
on each edge, so only two paths are involved in each update step of
the architecture parameters, indicating Oð2MÞ memory complexity
[29]. In fact, ProxylessNAS mitigates the inconsistency problem but
not resolves it, as the target network only has one path on each
edge.

Sampling-based Non-differentiable NAS. ENAS [12], AutoHAS
[30], and TuNAS [31] all sample the sub-network to update the



1 We compare different functions for architecture parameters, please refer to the
ablation study.

Z. Sun, Y. Hu, L. Yang et al. Neurocomputing 497 (2022) 227–238
super-network weights, so the memory and time complexity are
the same as ours: O(M)/O(T). Their non-differentiable sampling
process utilizes a reinforcement controller trained with policy gra-
dient which is computed with the Monte Carlo estimation on the
validation dataset. Whereas, our differentiable sampling process
optimizes the loss function directly on the training dataset. The
first disadvantage of sampling-based non-differentiable NAS meth-
ods is that the policy gradient computed with the Monte Carlo esti-
mation has a higher variance than the standard SGD gradient [12],
and the second disadvantage is that the reinforcement-learning
based NAS method converges slowly and achieves noisy accuracy
along with the search [22], inferior to differentiable NAS methods.

3. Methodology

3.1. Preliminary

Differentiable architecture search builds a super-network by
stacking L cells. A cell is defined as a directed acyclic graph
(DAG) with N nodes, where each node xi represents the related fea-
ture map and each edge ði; jÞ is associated with mixed operation
oði;jÞ. For each cell, the input nodes are represented by the outputs
from the previous two cells, each intermediate node aggregates
information flows from all of its predecessors, and the output node
is defined as a concatenation of a fixed number of its predecessors.
During the search stage, by constructing a source super-network
consisting of L cells (e.g. L ¼ 8 in DARTS), all the possible opera-
tions within the search space O on an edge ði; jÞ are parameterized
as architecture parameters aði;jÞ by using softmax relaxation,

�oði;jÞðxjÞ ¼
X
o2O

expðaði;jÞ
o ÞX

o02O
expðaði;jÞ

o0 Þ
oðxiÞ: ð1Þ

Thus, the differentiable architecture search can be formulated
as a bi-level optimization problem:

min
a

Lvalðw�ðaÞ;aÞ;
s:t: w�ðaÞ ¼ argminwLtrainðw;aÞ;

ð2Þ

where the network weights and architecture parameters are alter-
nately optimized on the training and validation datasets
respectively.

At the end of the search, the final architecture is derived by
selecting the operation with the largest architecture weight for

every mixture operation oði;jÞ ¼ argmaxo2Oa
ði;jÞ
o , and then a deeper

target super-network (e.g. L ¼ 20 in DARTS) is built to evaluate
the performance of the searched architecture.

3.2. The Inconsistency Collapse

As mentioned above, the previous differentiable architecture
search optimizes all candidate operations in an edge by using soft-
max but only one operation will be selected, this may introduce
the inconsistency collapse, and we categorize it as cell inconsis-
tency and discretization inconsistency.

Cell Inconsistency. The number of edges in the source cell is
inconsistent with the target cell, which means that the whole
super-network needs to be loaded in the GPU, thus the search pro-
cess is memory-consuming. As shown in Table 3, when using the
same batch size of 64, DARTS requires 9.4GB of GPU memory
which is extremely large when comparing with the 1.8GB of GPU
memory required by STC-NAS. On the other hand, the architecture
parameters are optimized by softmax relaxation, whereas it pro-
vides an exclusive competition since increasing one is at the cost
of suppressing others. As a result, the non-parameter operation
229
(e.g. skip-connection) becomes gradually dominant during opti-
mization. From Fig. 2, we can see that half of the operations in
the normal cell is skip-connection, and almost all operations in
the reduction cell are also non-parametric. Because non-
parameter operations are beneficial for the supernet training, but
too many of them do not contribute to the final performance.

Discretization Inconsistency. At the end of the search, the final
cell is derived by simply selecting the operation with the largest
weight. However, the magnitudes of architecture parameters are
so close that discretization can degrade the performance signifi-
cantly. As can be seen from Fig. 3, the range of softmax a is too nar-
row to distinguish which operation is superior to others. For
example, on the first edge of the normal cell, the operation of
skip-connect and dil-conv-3x3 are the same weight and are also
very close to the weight of sep-conv-3x3, so it is hard to distinguish
the best operation by simply selecting the largest weight’s opera-
tion. What’s worse, Table 1 shows the accuracy has dropped by
almost 79.2% by the discretization mentioned above.

The next, we propose our STC-NAS method to solve the incon-
sistency issues of differentiable neural architecture search. In order
to express it more clearly, we distinguish the specific meaning of
different a in Table 2, and the main framework of STC-NAS is
shown in Fig. 4.
3.3. Sampling with Cell Consistency

To avoid unfair competition among different candidate opera-
tions, we use the Relu activation function1 to compute the weights
of the architecture parameters instead of softmax. In this way the
importance of each operation is independently calculated without
passively competing against each other, and the weights of each
operation is guaranteed to be greater than zero. Otherwise, it will
bring negative effects on the feature map if the weight of an opera-
tion is less than zero. Thus we replace Eq. (1) with

�oði;jÞðxjÞ ¼
X
o2O

Reluðaði;jÞ
o ÞoðxiÞ: ð3Þ

To implement the cell consistency in the search phase, we
directly sample a target sub-cell from the DAG by applying the Kro-
necker delta function on all candidate operations on the edge ði; jÞ,
which guarantees that only the operation with the largest weight is
activated for the edge ði; jÞ. Thus, as shown in Fig. 4, the cell consis-
tency is guaranteed because the number of edges in the searched
cell is the same as that in the target cell. Specifically, we give the
formulation of the Kronecker delta function in the discrete cases:

dmn ¼ 1;m ¼ n;

0;m–n;

�
ð4Þ

where the Kronecker delta dmn is a piecewise function of variablesm
and n. Then we use the sifting property of the Kronecker delt func-
tion to sample the most important operation. And the sifting prop-
erty of the Kronecker delta function is:

P
mdmnam ¼ an. When we set

n ¼ argmaxðaÞ, i.e., the index of the largest architecture weight on
an edge. Then according to the ‘‘sifting” property, all m candidate
operations will be applied to the Kronecker delta function dmn,
and the weighted summation corresponds to the operation to get
the final output. In other words, the output indicates the operation
with the largest architecture weight.

To escape from the local optima, we add extra uniformly-
distributed noise on each operation during the sampling process.
As the optimization progresses, we gradually anneal down the



Fig. 2. DARTS searched cells on CIFAR-10.

Fig. 3. The heatmap of softmax architecture parameters a for DARTS searched cells on CIFAR-10.

Table 1
The performance degradation of DARTS by simply discretization.

Architecture Top-1 Valid. Acc. (%)

The whole super-network 88.1
Discretization of super-network 9.9(#78.2)

Table 2
The mathematical form and specific meanings of different a.

Notation Mathematical
Form

Specific Meanings

a. matrices the whole architecture parameters of source super-
cell

as matrices the architecture parameters of the sampled target
sub-cell

aði;jÞ
o

vector the operation weight of a pair of node ði; jÞ
aði;jÞ
k

scalar the weight of the sampled operation k associated
with the edge ði; jÞ

Z. Sun, Y. Hu, L. Yang et al. Neurocomputing 497 (2022) 227–238
range of noise so that the architecture parameters can play a deci-
sive role. Therefore, Eq. (3) can be rewritten as :

�oði;jÞðxjÞ ¼ P
dmnReluðaði;jÞ

o ÞoðxiÞ;
s:t: n ¼ argmaxðaði;jÞ

o þ �ði;jÞo Þ; ð5Þ
230



Table 3
Search computation complexity comparison between STC-NAS and others. ‘‘L” denotes the cell numbers of super-network. ‘‘BS” denotes the batch size. ‘‘MEM” denotes the GPU
memory consumption. ‘‘M” and ‘‘T” means the memory and time complexity of target subnet. All are tested on a single NVIDIA V100 GPU.

L Methods BS MEM GPU- Complexity

(GB) Days MEM Time

- Subnet - - - OðMÞ OðTÞ
8 DARTS 64 9.4 0.75 OðnMÞ OðnTÞ

SNAS 64 9.4 1.45 OðnMÞ OðnTÞ
GDAS 256 6.8 0.18 OðMÞ OðTÞ
STC-NAS 64 1.8 0.142 OðMÞ OðTÞ
STC-NAS 128 3.1 0.083 OðMÞ OðTÞ
STC-NAS 256 5.5 0.059 OðMÞ OðTÞ

20 DARTS 96 80 8.4 OðnMÞ OðnTÞ
SNAS 96 83 15.6 OðnMÞ OðnTÞ
GDAS 96 16 1.0 OðMÞ OðTÞ
STC-NAS 96 12 0.22 OðMÞ OðTÞ

Fig. 4. The main framework of the proposed STC-NAS. We firstly sample a sub-cell whose number of edges is consistent with the target-derived cell. To strengthen the
distinction among different candidate operations and make the sampling process stable, we leverage Jensen-Shannon divergence for architecture parameter optimization to
guarantee the discretization consistency. Then the sampled sub-cell is stacked to build a super-network that is depth consistent with the target super-network and is directly
searched on the target dataset.

Z. Sun, Y. Hu, L. Yang et al. Neurocomputing 497 (2022) 227–238
where �ði;jÞo is the random noise whose range is annealed as the
epoch increases, and then the Kronecker delta dmn is adopted to
sample the most important operation that is associated with the
edge.

3.4. Optimization with Discretization Consistency

To ensure that the architecture parameters are in the feasible
area at each iteration, we adopt the Projected Gradient Descent
(PGD) algorithm. Firstly, we define the constraint set of architec-
ture parameters as follows:

Q ¼ fjjaði;jÞjj0 ¼ 1;0 6 aði;jÞ
k � 1g; ð6Þ

which means that there is only one associated operation being acti-
vated for every edge, and the range of ak is between zero and one.
After the gradient descent update, if the point ak � grf ðakÞ is out of
the constraint set Q, then we project it back to the feasible area
with PGD:

akþ1 ¼ PQðak � grf ðakÞÞ; ð7Þ
231
where g is the learning rate and PQð�Þ is the projection operator
which is also an optimization problem:

PQðakÞ ¼ argminakþ12Q
1
2
jjakþ1 � akjj22; ð8Þ

i.e., given an initial point ak;PQ tries to find a point akþ1 2 Q which
is the closest to ak.

Moreover, in order to make each candidate operation distin-
guishable as much as possible, we leverage Jensen-Shannon diver-
gence for architecture parameter optimization to ensure the
discretization consistency. JS divergence measures the similarity
of two probability distributions. Compared with the Kullback-
Leibler (KL) divergence, JS divergence provides a symmetrical and
normalized version of KL divergence. So we compute the JS loss
using the sampled target sub-cell (i.e., as in Fig. 4) and and the
source super-cell (i.e., a in Fig. 4), and in this way, the optimization
is pushed towards the target sub-cell. The Jensen-Shannon diver-
gence can be computed as:

JSðasjjaÞ ¼ 1
2
KLðasjjas þ a

2
Þ þ 1

2
KLðajjas þ a

2
Þ; ð9Þ



Table 4
Search results on CIFAR-10 and CIFAR-100 and comparison with other state-of-the-art methods. STC-NAS-w/o DepthC means that we search on the shallow super-network
without the depth consistency in the same way as other methods. We report the average results for three independent runs of searching with different initial random seeds.

Methods CIFAR-10 CIFAR-100 Search Time Search

Test Err.(%) Params(M) Test Err.(%) Params(M) (GPU-days) Algorithm

NASNet-A+cutout [2] 2.65 3.3 - - 1800 RL
AmoebaNet-B+cutout [11] 2.55�0.05 2.8 - - 3150 EA
PNAS [34] 3.41�0.09 3.2 - - 225 SMBO
ENAS+cutout [12] 2.89 4.6 - - 0.45 RL
DARTS(first order)+cutout [13] 3.00�0.14 3.3 17.76 3.3 4 Gradient
SNAS(moderate constraint) [24] 2.85�0.02 2.8 - - 1.5 Gradient
GDAS+cutout [25] 2.93 3.4 18.38 3.4 0.21 Gradient
P-DARTS+cutout [17] 2.5 3.4 16.55 3.4 0.3 Gradient
PC-DARTS+cutout [23] 2.57�0.07 3.6 - - 0.1 Gradient
DATA(M=7)+cutout [26] 2.59 3.4 - - 1 Gradient
SGAS(Cri.1 avg.) [21] 2.66�0.24 3.7 - - 0.25 Gradient
FairDARTS [14] 2.54�0.05 3.32�0.46 - - 0.4 Gradient
SDARTS-ADV [35] 2.61�0.02 3.3 - - 1.3 Gradient
NASP(7 operations)+cutout [27] 2.83�0.09 3.3 - - 0.1 Gradient
STC-NAS-w/o DepthC(avg.) 2.48�0.03 3.89�0.11 17.01�0.29 3.82�0.03 0.059 Gradient
STC-NAS-w/o DepthC(best) 2.45 3.98 16.59 3.79 0.059 Gradient
STC-NAS(avg.) 2.46�0.04 3.88�0.31 16.71�0.19 3.85�0.24 0.22 Gradient
STC-NAS(best) 2.42 3.86 16.45 4.17 0.22 Gradient

Z. Sun, Y. Hu, L. Yang et al. Neurocomputing 497 (2022) 227–238
where KLð�Þ is the Kullback-Leibler (KL) divergence that is computed
as KLðPjjQÞ ¼ PðP log P � P logQÞ.

Thus the overall objective of STC-NAS is as follows:

min Lvalðw�ðasÞ;asÞ þ kJSðasjjaÞ;
s:t: w�ðasÞ ¼ argminwLtrainðws;asÞ: ð10Þ
2

4. Experiments

4.1. Datasets

We conduct our method on four popular image classification
datasets including CIFAR-10, CIFAR-100, ImageNet, and NAS-
Bench-201 [32] or also called NATS-Bench [33]. Both of the
CIFAR-10 and CIFAR-100 datasets have 50K training RGB images
and 10K testing RGB images with a fixed spatial resolution of
32�32. The ILSVRC2012 ImageNet dataset contains 1.28M training
and 50K validation images with 1000 object categories. We set the
input image size as 224�224 and the number of multi-adds oper-
ations is strict to less than 600M. NAS-Bench-201 or NATS-Bench is
a benchmark for almost up-to-date NAS algorithms, and it contains
15,625 neural architectures with detailed information including
accuracy, loss, FLOPs, etc.

4.2. Search and Evaluation on CIFAR datasets

We conduct a bi-level optimization to alternately optimize the
network weights on half of the training set and update the archi-
tecture parameters on the other half of the training set as valuation
set, respectively. In particular, we use SGD optimizer to update
network weights with initial learning rate 0.025, the minimum
learning rate 0.001, momentum 0.9, and weight decay 3� 10�4.
And the architecture parameters are optimized by Adam with ini-
tial learning rate 3� 10�4, momentum (0.5, 0.999), but we set the
architecture weight decay to be zero to prevent the weight of not-
sampled operations from dropping. In addition, we set the initial
232
range of the uniformly-distributed noise as 0.3 which gradually
decreases to zero2, and the coefficient k of JS loss increases from zero
to two as the searching epoch progresses.3

STC-NAS significantly improves the search efficiency due to the
cell consistency. As can be seen from Table 3, our method can
improve the batch size to 256 while the memory consumption is
still less than DARTS, and the search time is only 0.059 GPU-days
which is about 12� speedup over DARTS. Besides, benefited from
depth consistency, the overall search time of our method is within
0.22 GPU-days, while DARTS requires 8.4 GPU-days and 80GB GPU
memory even on such a small dataset CIFAR-10.

In the evaluating phase, the searched normal cell and the reduc-
tion cell are stacked to build the target super-network, which con-
sists of 20 layers with initial channel size 36. The network is
trained from scratch for 600 epochs with batch size 96. We use
an SGD optimizer with a weight decay of 3� 10�4 and a momen-
tum of 0.9. The initial learning rate starts from 0.025 and follows
the cosine annealing strategy to a minimum of 0. The evaluation
results on CIFAR-10 and CIFAR-100 are listed in Table 4.

The results show that our method is very efficient and can
obtain a relatively better architecture. Comparing with other
methods under the same experimental setting, i.e., searching a
super-network of 8 cells, the average test error on CIFAR-10 and
CIFAR-100 is 2.48% and 17.01% respectively, indicating that our
method can search a stable architecture even with different seed
initialization. Moreover, under the consistency of depth and task
dataset, STC-NAS achieves 2.46% and 16.71% average test error
on CIFAR-10 and CIFAR-100 and the best result is 2.42% and
16.45% respectively, which outperforms the state-of-the-art
methods.

4.3. Search and Evaluation on ImageNet

We directly search on ImageNet with the target super-network
which consists of 14 cells and 48 initial channels. Considering that
ImageNet is extremely large, we randomly sample 10% images
We compare the different range of initial sampling noise, please refer to the
ablation study.

3 We compare the performance of different coefficient k, please refer to the ablation
study.



Table 5
Search results on ImageNet and comparison with other state-of-the-art methods. STC-NAS-w/o DepthC&TC means that we search without the depth and task dataset consistency,
i.e., the results are transferred from CIFAR-10 in the same way as other methods. *means the search space is layer-wise (i.e., based on blocks of MobileNetV2) which is different
from the cell-based search space of DARTS.

Methods Test Err. (%) Params Flops Search Cost Search

Top-1 Top-5 (M) (M) (GPU-days) Algorithm

NASNet-A [2] 26.0 8.4 5.3 564 1800 RL
AmoebaNet [11] 24.3 7.6 6.4 570 3150 EA
PNAS [34] 25.8 8.1 5.1 588 225 SMBO
DARTS [13] 26.7 8.7 4.7 574 4 Gradient
SNAS(mild constraint) [24] 27.3 9.2 4.3 522 1.5 Gradient
GDAS [25] 26.0 8.5 5.3 581 0.21 Gradient
P-DARTS [17] 24.4 7.4 4.9 577 0.3 Gradient
SGAS(Cri.1 best) [21] 24.2 7.2 5.3 585 0.25 Gradient
PC-DARTS [23] 25.1 7.8 5.3 586 0.1 Gradient
DATA [26] 24.9 8.0 5.0 588 1 Gradient
FairDARTS-B [14] 24.9 7.5 4.8 541 0.4 Gradient
ProxylessNAS [28]* 24.9 7.5 7.1 465 8.3 Gradient
DSNAS [29]* 25.7 8.1 - 324 17.5 Gradient
NASP(7 operations) [27] 27.2 9.1 4.6 - 0.1 Gradient
STC-NAS-w/o DepthC&TC 24.3 7.4 5.3 596 0.059 Gradient
STC-NAS 24.2 7.3 5.3 588 0.625 Gradient

Table 6
Search results on NAS-bench-201 and NATS-Bench. We report the average performance for three independent runs of searching. ‘‘Optimal” indicates the highest accuracy for each
dataset on NAS-Bench-201 or also NATS-Bench.

Methods Search CIFAR-10 CIFAR-100 ImageNet-16-120

(seconds) validation test validation test validation test

Optimal N/A 91.61 94.37 73.49 73.51 46.77 47.31
NAS- Bench- 201 RSPS [36] 8007.13 80.42�3.58 84.07�3.61 52.12�5.55 52.31�5.77 27.22�3.24 26.28�3.09

DARTS [13] 11625.77 39.77�0.00 54.30�0.00 15.03�0.00 15.61�0.00 16.43�0.00 16.32�0.00
GDAS [25] 31609.80 89.89�0.08 93.61�0.09 71.34�0.04 70.70�0.30 41.59�1.33 41.71�0.98
SETN [37] 34139.53 84.04�0.28 87.64�0.00 58.86�0.06 59.05�0.24 33.06�0.02 32.52�0.21
ENAS [12] 14058.80 37.51�3.19 53.89�0.58 13.37�2.35 13.96�2.33 15.06�1.95 14.84�2.10

NATS-Bench RSPS [36] 8007.13 87.60�0.61 91.05�0.66 68.27�0.72 68.26�0.96 39.73�0.34 40.96�0.36
DARTS(1st) 11625.77 49.27�13.44 59.84�7.84 61.08�4.37 61.26�4.43 38.07�2.90 37.88�2.91
DARTS(2nd) - 58.78�13.44 65.38�7.84 59.48�5.13 60.49�4.95 37.56�7.10 36.79�7.59
GDAS [25] 31609.80 89.68�0.72 93.23�0.58 68.35�2.71 68.17�2.50 39.55�0.00 39.40�0.00
SETN [37] 34139.53 90.00�0.97 92.72�0.73 69.19�1.42 69.36�1.72 39.77�0.33 39.51�0.33
ENAS [12] 14058.80 90.20�0.00 93.76�0.58 70.21�0.71 70.67�0.62 40.78�0.00 41.44�0.00
STC-NAS 3600 89.83�0.04 93.41�0.2 70.04�0.63 70.43�0.21 44.45�0.16 45.03�0.36

Z. Sun, Y. Hu, L. Yang et al. Neurocomputing 497 (2022) 227–238
from each class as the training and validation dataset to optimize
the network weights and architecture parameters respectively.
We use SGD optimizer with an initial learning rate of 0.5, the min-
imum learning rate of 0.001, momentum 0.9, and weight decay
3� 10�4. And the Adam optimizer is used to update architecture
parameters with an initial learning rate of 3� 10�4 and momen-
tum (0.5, 0.999). We search for 50 epochs in total on ImageNet
to obtain the final architecture.

In the evaluation phase, we train the super-network of 14 cells
and 48 initial channels for 250 epochs with a batch size of 1024 on
ImageNet. We utilize the SGD optimizer with momentum 0.9 and
initial learning rate 0.5 which is decayed by cosine strategy of
3� 10�5. From Table 5, we can see that by directly searching on
ImageNet with the target super-network within 0.625 GPU-days,
STC-NAS achieves state-of-the-art performance with 24.2% top-1
test error and 7.3% top-5 test error. In addition, we also transfer
the architecture searched on CIFAR-10 to ImageNet to compare
with other transfer-based methods. STC-NAS achieves 24.3% top-
1 and 7.4% top-5 test error, indicating good transferability of the
searched architecture.

4.4. Search and Evaluation on NAS-Bench-201

In NAS-Bench-201 [32] or also called NATS-Bench [33], the
super-network is also stacked by cells but it only needs to search
for normal cells and maintain the reduction cells as residual blocks
233
with a stride of two. Each normal cell includes four nodes and five
associated operations on every edge. We search for 50 epochs on
CIFAR-10 and then index the accuracy of the searched architecture
on the three datasets CIFAR-10, CIFAR-100, and Image-Net-16-120,
respectively. We experiment three times independently with dif-
ferent initial random seeds, and the results are shown in Table 6.
Comparing with other methods, STC-NAS achieves comparable
performance to ENAS on CIFAR-10 and GDAS on CIFAR-100, and
best results on ImageNet-16-120. Besides, STC-NAS only requires
one hour to finish the search due to directly searching for the tar-
get architecture, which is much faster than the other methods.
5. Ablation Study

5.1. Analysis of Search Efficiency

During the search process, STC-NAS satisfies the source-target
consistency. That is, we only need to search for the super-
network consistent with the target model, which is extremely
time- and resource-efficiency. From Table 3, we can see that the
computation complexity of our method is the same as the target
model, while DARTS and SNAS require n times resources because
they optimize all of the candidate operations in the search phase.
Though GDAS also optimizes the subnetwork, it leverages
Gumble-softmax to compute the architecture parameters so that
it needs more epochs to anneal down the temperature s and the



Fig. 5. The Kendall s for architecture ranking between the search and evaluation
phase. Architecture rankings are obtained from 8 independent runs of searching on
CIFAR-10.

Fig. 6. Comparison of Softmax, Sigmoid and Relu for architecture parameters. The
mean and the standard deviation are obtained from three independent runs of
searching on CIFAR-10.

Fig. 7. Comparison of the different initial range of sampling noise. The mean and
the standard deviation are obtained from three independent runs of searching on
CIFAR-10.

Table 7
Comparison of different coefficients k of JS-loss. The mean and the standard deviation
are obtained from three independent runs of searching on CIFAR-10.

Coefficient k Acc.

0 97.19�0.12
Static 1 97.27�0.07

2 97.31�0.11
0!1 97.16�0.26

Dynamic 1!2 97.34�0.02
0!2 97.52�0.03

Z. Sun, Y. Hu, L. Yang et al. Neurocomputing 497 (2022) 227–238
fixed reduction cells may not optimal thus requires slightly more
memory consumption.

5.2. The Ranking Correlation

The correlation between the performance of the search and
evaluation phase is an important factor in the stability of the
searching algorithm. The Kendall s metric is a common measure-
ment of the correlation between two rankings. We calculate the
Kendall s on our two experimental settings according to whether
considering depth consistency. We repeat the experiments eight
times with random seeds on CIFAR-10 to obtain the accuracy rank-
ing of search and then retrain from scratch for each searched archi-
tecture to obtain the accuracy ranking of evaluation.

As can be seen from Fig. 5, the Kendall s of searching with depth
consistency is 0.64, which is better than searching on the shallower
super-network. Besides, the average accuracy is also improved by
depth consistency. So we can summarize that searching with
source-target consistency is important for both correlation and
accuracy.

5.3. The Effectiveness of the Relu Function

The weights of operations on an edge can be calculated by var-
ious functions, such as Softmax, Sigmoid and Relu. To demonstrate
the effects of Softmax, Sigmoid and Relu on the performance of the
searched architecture, we repeat the experiments for each function
three times with different random seeds on CIFAR-10. From Fig. 6,
we can see that the performances of Softmax and Sigmoid function
are inferior to the Relu activation function. This is because the Soft-
max function introduces implicit competition among different
operations thus preferring non-parameterized operations, while
the Sigmoid function may cause the vanishing gradient problem
when approaching the saturation zone. Using the Relu function
can avoid the above mentioned problems and achieve better
performance.

5.4. The Range of Sampling Noise

During the search process, we add extra uniformly-distributed
noise to the architecture parameters when sampling a sub-cell
from the whole DAG and the range of noise should be gradually
annealed down to zero as the epoch increases so that better archi-
tectures are not disturbed. Here we diagnose what the initial range
of noise is suitable. Fig. 7 demonstrates that the performance is
extremely terrible without the noise because the searching is
trapped in a local solution without exploration. Besides, the initial
sampling noise of 0.3 performs better than the range of 0.1 or 0.5. It
can be explained that the smaller range may have no enough
exploration and in contrast, the larger range may not converge well
to a better solution.

5.5. The Coefficient of JS-Loss

The Jensen-Shannon divergence loss is introduced to narrow
the distribution gap between the sampled target sub-cell and the
source super-cell. As the optimization progresses, the weight dis-
tribution of the super-cell gradually approximates the sampled tar-
get cell, improving performance by closing the discretization gap.
Here we explore the influence of different coefficients of regula-
tion. Static coefficient means that the coefficient k is constant dur-
ing the search process, while dynamic means that the coefficient k
increases as the search epoch increasing. From Table 7, we can see
that when discarding the Jensen-Shannon divergence (k=0), the
performance is degraded, demonstrating the effectiveness of the
Jensen-Shannon divergence. The suitable regulation weight is cap-
234



Table 8
Performance comparison for lacking any one of the four consistencies. The mean and the standard deviation are obtained from three independent runs of searching on CIFAR-100.

Cell Discretization Depth/Width Task Dataset Accuracy

U U U U 83.29�0.19
� U U U 82.35�0.28(# 0.94)
U � U U 82.57�0.19(# 0.72)
U U � U 82.99�0.29(# 0.30)
U U U � 83.04�0.18(# 0.25)

(a) DARTS (b) STC-NAS

Fig. 8. The number of skip-connect and accuracy with searching more epochs on CIFAR-10..

(a) Heatmap of Normal Cell

(b) Heatmap of Reduction Cell

Fig. 9. The heatmap of architecture parameters a for STC-NAS searched cells on CIFAR-10..

Z. Sun, Y. Hu, L. Yang et al. Neurocomputing 497 (2022) 227–238
able of reducing the variance, and the coefficient k of JS loss
dynamically increasing from zero to two obtains the highest accu-
racy for our method. In particular, the optimization mainly focuses
on architecture parameters at the early stage, and then the loss of
distribution divergence gradually plays a more important role in
narrowing the gap.
235
5.6. The Importance of Consistency

Our STC-NAS satisfies the consistency of cell, discretization,
depth/width, and task dataset during the search process. Here we
investigate that each of the four consistencies is indispensable
for improving performance. We conduct the ablation study on



Z. Sun, Y. Hu, L. Yang et al. Neurocomputing 497 (2022) 227–238
the CIFAR-100 dataset. As shown in Table 8, , STC-NAS achieves the
best performance with the aforementioned four consistencies.
Meanwhile, the accuracy is reduced for lacking any one of the four
consistencies. The inconsistency of cell or discretization brings a
more noticeable decrease than the task dataset inconsistency or
the depth/width inconsistency, showing the effectiveness of the
proposed method.
5.7. Analysis of Overfitting Collapse

Previous DARTS approaches rely on early-stop to mitigate skip-
connect aggregation introduced by the softmax function. STC-NAS
replaces the softmax with the ReLU function, so our method does
not have such overfitting issue. We evaluate the search process
with more than 50 epochs, i.e., 150 epochs, and obtain the number
of skip-connect in the derived cell for each epoch. We train the
searched architecture for every 25 epoch from scratch to obtain
the final accuracy. As shown in Fig. 8, the solid red line and solid
blue line represent the number of skip-connect for normal cell
and reduction cell respectively, and the dotted black line repre-
sents the accuracy of the searched architecture every 25 epoch.
From Fig. 8, we can see that for DARTS method, the number of
skip-connect becomes more and more dominant as the search
epochs increase, and finally the normal cell has only skip-connect
Fig. 10. Our best searche

Fig. 11. Our best searched

Fig. 12. Our best searche

236
in the last 25 epochs, which significantly downgrades the perfor-
mance. However, our STC-NAS does not experience the phe-
nomenon of skip-connect aggregation and the number of skip-
connect is always less than three. The accuracy of STC-NAS always
outperforms DARTS and does not drop dramatically even though
searching with more epochs. The highest accuracy of STC-NAS
occurs at the 50th epoch, suggesting that no early-stop is required
to avoid overfitting during the search.
5.8. Visualization

Here we visualize the heatmap of architecture parameters for
STC-NAS searched cells on CIFAR-10. From Fig. 9, we can see that
the weights a of the selected edge are close to the one-hot distri-
bution, i.e., the weights a of obtained operations are greater than
those discarded operations, thus mitigating the discretization
inconsistency. However, as can be seen from Fig. 3, the distribution
of architecture parameters in DARTS is too close to select an oper-
ation that is significantly superior to others, thus bringing the dis-
cretization inconsistency.

We also visualize the best cells directly searched on CIFAR-10 in
Fig. 10, the best cells directly searched on CIFAR-100 in Fig. 11 and
the best cells directly searched on ImageNet in Fig. 12, respectively.
d cells on CIFAR-10.

cells on CIFAR-100.

d cells on ImageNet.



Z. Sun, Y. Hu, L. Yang et al. Neurocomputing 497 (2022) 227–238
6. Conclusion

In this paper, we revisit the inconsistency issues in existing dif-
ferentiable NAS methods and propose to implement fast differen-
tiable architecture search with source-target consistency. The
search process of STC-NAS is very fast and memory-efficient due
to the guarantee of cell and discretization consistency, so that facil-
itates to directly search the target super-network on large datasets
such as ImageNet. Experimental results demonstrate the searched
networks achieve significantly better performance in comparison
with state-of-the-art methods.

CRediT authorship contribution statement

Zihao Sun: Conceptualization, Methodology, Software, Valida-
tion, Formal-analysis, Investigation, Data-curation, Writing-
original-draft, Writing-review-editing, Visualization. Yu Hu: Con-
ceptualization, Methodology, Formal-analysis, Resources,
Writing-original-draft, Writing-review-editing, Supervision,
Funding-acquisition. Longxing Yang: Conceptualization, Method-
ology, Software, Writing-review-editing. Shun Lu: Conceptualiza-
tion, Methodology, Software, Writing-review-editing. Jilin Mei:
Conceptualization, Methodology, Writing-review-editing. Yinhe
Han: Resources, Writing-review-editing, Funding-acquisition.
Xiaowei Li: Writing-review-editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work was supported in part by the National Key R&D Pro-
gram of China under grant No. 2018AAA0102701 and in part by the
State Key Laboratory of Computer Architecture (ICT, CAS) under
Grant No. CARCH5203.

References

[1] B. Zoph, Q.V. Le, Neural architecture search with reinforcement learning, in:
ICLR, 2017..

[2] B. Zoph, V. Vasudevan, J. Shlens, Q.V. Le, Learning transferable architectures for
scalable image recognition, in: CVPR, 2018. .

[3] Y. Chen, T. Yang, X. Zhang, G. Meng, X. Xiao, J. Sun, Detnas: Backbone search for
object detection, in: NeurIPS, 2019..

[4] G. Ghiasi, T.-Y. Lin, Q.V. Le, Nas-fpn: Learning scalable feature pyramid
architecture for object detection, in: CVPR, 2019. .

[5] L.-C. Chen, M. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff, H. Adam, J.
Shlens, Searching for efficient multi-scale architectures for dense image
prediction, in: NeurIPS, 2018..

[6] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A.L. Yuille, L. Fei-Fei, Auto-
deeplab: Hierarchical neural architecture search for semantic image
segmentation, in: CVPR, 2019. .

[7] B. Baker, O. Gupta, N. Naik, R. Raskar, Designing neural network architectures
using reinforcement learning, arXiv preprint arXiv:1611.02167 (2016)..

[8] I. Bello, B. Zoph, V. Vasudevan, Q.V. Le, Neural optimizer search with
reinforcement learning, in: ICML, 2017..

[9] E. Real, S. Moore, A. Selle, S. Saxena, Y.L. Suematsu, J. Tan, Q.V. Le, A. Kurakin,
Large-scale evolution of image classifiers, in: ICML, 2017..

[10] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, K. Kavukcuoglu, Hierarchical
representations for efficient architecture search, in: ICLR, 2018. .

[11] E. Real, A. Aggarwal, Y. Huang, Q.V. Le, Regularized evolution for image
classifier architecture search, in: AAAI, 2019. .

[12] H. Pham, M. Guan, B. Zoph, Q. Le, J. Dean, Efficient neural architecture search
via parameters sharing, in: ICML, 2018..

[13] H. Liu, K. Simonyan, Y. Yang, Darts: Differentiable architecture search, in: ICLR,
2018..

[14] X. Chu, T. Zhou, B. Zhang, J. Li, Fair darts: Eliminating unfair advantages in
differentiable architecture search, in: ECCV, 2020. .

[15] Y. Tian, C. Liu, L. Xie, J. Jiao, Q. Ye, Discretization-aware architecture search,
arXiv preprint arXiv:2007.03154 (2020)..
237
[16] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
CVPR, 2016. .

[17] X. Chen, L. Xie, J. Wu, Q. Tian, Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation, in: ICCV, 2019..

[18] B. Recht, R. Roelofs, L. Schmidt, V. Shankar, Do imagenet classifiers generalize
to imagenet, in: ICML, 2019..

[19] Y. Li, Z. Yang, Y. Wang, C. Xu, Adapting neural architectures between domains,
in: NeurIPS, 2020. .

[20] L. Xie, X. Chen, K. Bi, L. Wei, Y. Xu, Z. Chen, L. Wang, A. Xiao, J. Chang, X. Zhang,
et al., Weight-sharing neural architecture search: A battle to shrink the
optimization gap, arXiv preprint arXiv:2008.01475 (2020)..

[21] G. Li, G. Qian, I.C. Delgadillo, M. Muller, A. Thabet, B. Ghanem, Sgas: Sequential
greedy architecture search, in: CVPR, 2020. .

[22] A. Noy, N. Nayman, T. Ridnik, N. Zamir, S. Doveh, I. Friedman, R. Giryes, L.
Zelnik, Asap: Architecture search, anneal and prune, in: NeurIPS, 2020..

[23] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, H. Xiong, Pc-darts: Partial
channel connections for memory-efficient architecture search, in: ICLR, 2019. .

[24] S. Xie, H. Zheng, C. Liu, L. Lin, Snas: stochastic neural architecture search, in:
ICLR, 2018. .

[25] X. Dong, Y. Yang, Searching for a robust neural architecture in four gpu hours,
in: CVPR, 2019. .

[26] J. Chang, X. Zhang, Y. Guo, G. Meng, S. Xiang, C. Pan, Data: Differentiable
architecture approximation, in: NeurIPS, 2019. .

[27] Q. Yao, J. Xu, W.-W. Tu, Z. Zhu, Efficient neural architecture search via proximal
iterations, in: AAAI, 2020. .

[28] H. Cai, L. Zhu, S. Han, Proxylessnas: Direct neural architecture search on target
task and hardware, in: ICLR, 2018..

[29] S. Hu, S. Xie, H. Zheng, C. Liu, J. Shi, X. Liu, D. Lin, Dsnas: Direct neural
architecture search without parameter retraining, in: CVPR, 2020. .

[30] X. Dong, M. Tan, A.W. Yu, D. Peng, B. Gabrys, Q.V. Le, Autohas: Efficient
hyperparameter and architecture search, in: ICLR Workshop, 2021. .

[31] G. Bender, H. Liu, B. Chen, G. Chu, S. Cheng, P.-J. Kindermans, Q.V. Le, Can
weight sharing outperform random architecture search? an investigation with
tunas, in: CVPR, 2020. .

[32] X. Dong, Y. Yang, Nas-bench-201: Extending the scope of reproducible neural
architecture search, in: ICLR, 2020. .

[33] X. Dong, L. Liu, K. Musial, B. Gabrys, Nats-bench: Benchmarking nas algorithms
for architecture topology and size, in: IEEE TPAMI, 2021. .

[34] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J.
Huang, K. Murphy, Progressive neural architecture search, in: ECCV, 2018. .

[35] X. Chen, C.-J. Hsieh, Stabilizing differentiable architecture search via
perturbation-based regularization, in: ICML, 2020..

[36] L. Li, A. Talwalkar, Random search and reproducibility for neural architecture
search, in: UAI, 2020. .

[37] X. Dong, Y. Yang, One-shot neural architecture search via self-evaluated
template network, in: ICCV, 2019..

Zihao Sun received the B.Eng. degree in School of
Automation from University of Science & Technology
Beijing, China, in 2018. He is currently pursuing the Ph.
D. degree in computer science from the Research Center
for Intelligent Computing Systems, Institute of Com-
puting Technology (ICT), Chinese Academy of Sciences
(CAS) and the University of Chinese Academy of Sci-
ences (UCAS), Beijing. His current research interests
include neural architecture search and deep learning.
Yu Hu received the B.S., M.S., and Ph.D. degrees in
electrical engineering from the University of Electronic
Science and Technology of China, Chengdu, China, in
1997, 1999, and 2003, respectively. She is currently a
Professor at the Research Center for Intelligent Com-
puting Systems, Institute of Computing Technology
(ICT), Chinese Academy of Sciences (CAS) and a Profes-
sor at the University of Chinese Academy of Sciences
(UCAS). Her research interests generally include
autonomous driving, deep learning and algorithm
acceleration.



Z. Sun, Y. Hu, L. Yang et al. Neurocomputing 497 (2022) 227–238
Longxing Yang received the B.Eng. degree in School of
Software from Beijing Institute of Technology, China, in
2018. He is currently pursuing the Ph.D. degree in
computer science from the Research Center for Intelli-
gent Computing Systems, Institute of Computing Tech-
nology (ICT), Chinese Academy of Sciences (CAS) and the
University of Chinese Academy of Sciences (UCAS),
Beijing. His research interests include neural architec-
ture search and neural network compression.
Shun Lu received the B.Eng. degree in School of
Automation from University of Science & Technology
Beijing, China, in 2019. He is currently pursuing the Ph.
D. degree in computer science from the Research Center
for Intelligent Computing Systems, Institute of Com-
puting Technology (ICT), Chinese Academy of Sciences
(CAS) and the University of Chinese Academy of Sci-
ences (UCAS), Beijing. His research interests include
neural architecture search.
Jilin Mei received the B.Eng. degree from University of
Electronic Science and Technology of China, Chengdu,
China, in 2014 and Ph.D. degree in School of Electronics
Engineering and Computer Science from Peking
University, Beijing, China, in 2020. He is currently
working as a special research assistant (postdoctoral
fellow) at the Research Center for Intelligent Computing
Systems, Institute of Computing Technology (ICT), Chi-
nese Academy of Sciences (CAS). His research interests
include autonomous driving and semantic segmenta-
tion.
238
Yinhe Han received the B.Eng. degree from the Nanjing
University of Aeronautics and Astronautics, Nanjing,
China, in 2001, and the Ph.D. degree from the Institute
of Computing Technology (ICT), Chinese Academy of
Sciences (CAS), Beijing, China, in 2006. He is currently a
Professor at the Research Center for Intelligent Com-
puting Systems, Institute of Computing Technology
(ICT), Chinese Academy of Sciences (CAS) and a Profes-
sor at the University of Chinese Academy of Sciences
(UCAS). His current research interests include computer
architecture and chip design for intelligent robot.
Xiaowei Li received the B.Eng. and M.Eng. degrees in
computer science from the Hefei University of Tech-
nology, Hefei, China, in 1985 and 1988, respectively, and
the Ph.D. degree in computer science from the Institute
of Computing Technology (ICT), Chinese Academy of
Sciences (CAS), Beijing, China, in 1991. He is currently
the Deputy (Executive) Director of the State Key Labo-
ratory of Computer Architecture, Institute of Computing
Technology (ICT), Chinese Academy of Sciences (CAS)
and a Professor at the University of Chinese Academy of
Sciences (UCAS). His current research interests include
VLSI testing, design verification, and dependable com-

puting.


	STC-NAS: Fast neural architecture search with source-target consistency
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Preliminary
	3.2 The Inconsistency Collapse
	3.3 Sampling with Cell Consistency
	3.4 Optimization with Discretization Consistency

	4 Experiments
	4.1 Datasets
	4.2 Search and Evaluation on CIFAR datasets
	4.3 Search and Evaluation on ImageNet
	4.4 Search and Evaluation on NAS-Bench-201

	5 Ablation Study
	5.1 Analysis of Search Efficiency
	5.2 The Ranking Correlation
	5.3 The Effectiveness of the Relu Function
	5.4 The Range of Sampling Noise
	5.5 The Coefficient of JS-Loss
	5.6 The Importance of Consistency
	5.7 Analysis of Overfitting Collapse
	5.8 Visualization

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References


